
EquiBFT: A Framework for Achieving Fairness in
BFT Consensus

Siwei Cai
Shanghai Jiao Tong

University
Shanghai, China

thranna@sjtu.edu.cn

Lei Fan
Shanghai Jiao Tong

University
Shanghai, China

fanlei@sjtu.edu.cn

Shengyun Liu
Shanghai Jiao Tong

University
Shanghai, China

shengyun.liu@sjtu.edu.cn

Hong-Sheng Zhou
Virginia Commonwealth

University
Richmond, United States

hszhou@vcu.edu

Abstract—Byzantine Fault-Tolerant (BFT) consensus protocols
are increasingly utilized in blockchain environments. In such
protocols, the leader node holds the authority to dictate the
transaction order, potentially impacting the fairness of decen-
tralized finance (DeFi) applications. For instance, attackers can
exploit this to manipulate transaction order and conduct front-
running attacks. The concept of order-fairness, which recently
emerged, has become a critical property for preventing a single
node from unilaterally determining transaction order. Protocols
designed to uphold order-fairness often rely on the sequence in
which transactions appear across the network, a factor that can
be influenced by the network’s topology. However, this approach
has inherent limitations, such as challenges in avoiding Condorcet
cycles (Kelkar et al., Crypto 2020).

To address these challenges, we propose a novel definition
of fairness that requires concealing transaction content before
ordering. Additionally, we extend the definitions of liveness and
safety of consensus protocols to cover the transaction decryption
process, guaranteeing the successful decryption of transactions.
Based on the existing BFT protocol and utilizing threshold
encryption algorithms, we designed a framework called EquiBFT
which can incorporate fairness to BFT protocols. We have proven
that the EquiBFT satisfies fairness while ensuring the liveness and
safety. We implemented this framework based on HotStuff (Yin
et al., PODC 2019) and validated its feasibility in a real-world
network environment.

I. INTRODUCTION

Byzantine Fault Tolerant (BFT) protocols are crucial for
achieving consensus in decentralized systems with potentially
malicious nodes and have become prevalent in blockchain
systems.The execution of a BFT protocol typically consists
of two stages. First, the leader node collects and orders
transactions submitted by clients, packages them into a block,
and sends it as a proposal to the consensus nodes. Subse-
quently, the consensus nodes engage in multiple voting rounds
to reach agreement on the proposal. The leader node has
the authority to determine the order of transactions within
the block. In blockchain-based Decentralized Finance (DeFi)
applications, transaction ordering directly impacts profitabil-
ity. Attackers can exploit this by manipulating transaction
ordering through the leader node to gain profit [2, 8, 10].
For example, an attacker might identify a high-value target
transaction involving the purchase of a specific asset and insert
a front-running transaction to buy the asset first. After the
target transaction inflates the asset’s price, the attacker then
inserts a reverse transaction to sell the asset at a higher price,

securing a risk-free profit. This strategy, known as a ”sandwich
attack”, involves placing two opposing transactions around the
target transaction to gain profits, significantly undermining the
fairness of the DeFi system.

In this paper we propose a novel definition of fairness for
consensus protocols, considering it as a fundamental property.
This notion of fairness ensures that no participant can discern
the content of a transaction before it is definitively ordered,
thereby preventing order manipulation attacks. Additionally,
we develop a framework capable of integrating fairness into
Byzantine Fault Tolerance (BFT) protocols.

A. Background and Related Work

To mitigate sandwich attack, two primary strategies have
been proposed. The first strategy is fair transaction ordering,
which seeks to prevent leader nodes from unilaterally deciding
transaction sequences. Introduced by Kelkar et al. [15], the
principle of order-fairness ensures that transaction order is
dictated by a majority of consensus nodes rather than a single
leader. Specifically, for any two transactions, a and b, if the
majority of nodes receive transaction a before transaction b,
then a must precede b in the final order. While this approach
has inspired subsequent works [6, 13, 14], they all struggle
to handle the cyclic dependencies known as the Condorcet
Paradox. It prevents the establishment of a unique and deter-
ministic transaction order. Aequitas [15] accommodates this by
achieving batch-order-fairness, outputting cyclic transactions
as a batch where the internal order is decided by the leader
node. To address performance issues, Rashnu [23] proposed a
fast fair ordering mechanism for transactions accessing inter-
dependent data, while SpeedyFair [22] enhances performance
by decoupling the ordering and consensus processes. Further-
more, recent studies [26] highlight that fair ordering can be
undermined by sophisticated order attacks, underscoring the
complex challenges of maintaining consistently fair transaction
orders. To broaden fairness across decentralized networks,
several investigations [13, 17, 29] have explored order-fairness
in permissionless environments.

Achieving strict fair ordering that is unaffected by the Con-
dorcet Paradox is known as strong fair ordering. Protocols such
as Pompe [31] and Wendy [18] aim for strong fairness using
timestamp-based mechanisms, relying on synchronized clocks
to streamline transaction ordering. However, this dependence



on clock synchronization presents a significant assumption.
Recently, this limitation was tackled by AOAB [11], which
proposed a fully asynchronous protocol utilizing logical times-
tamps. However, AOAB requires additional interactions, which
increases the consensus latency.

The second strategy is transaction concealing, using cryp-
tographic algorithms to protect transactions without modifying
the consensus protocol. The commit-reveal scheme [9, 10]
is designed based on this technical path, but it is vulnerable
to denial-of-service attacks from malicious clients, who first
observe the decryption results of other transactions after con-
sensus is reached and refrain from sending the decryption keys.
To address this issue, TEX [16] employs trusted hardware
to create a secure environment, allowing transactions to be
encrypted and revealed in a controlled manner, thus preventing
unauthorized access to plaintext during ordering. Another
approach [19] introduces verifiable fairness, where transaction
order can be verified by other consensus nodes, utilizing
TEE to ensure a secure transaction processing environment.
Similarly, Fairy [25] is a Byzantine fault-tolerant protocol
resistant to front-running, using TEE to reveal transaction
content upon delivery, aiming to ensure verifiable fairness.

To eliminate the need for additional trusted hardware,
some schemes employ verifiable secret sharing scheme. In
Helix [27], blocks are distributed in shares among consensus
nodes, who can reconstruct the entire block by combining
a sufficient number of shares. Fino [20] encrypts transac-
tions, allowing the recovery of the encryption key only after
transactions are finalized. Threshold encryption is another
technique used to obscure transaction content prior to final-
ization. F3B [30] implements a verifiable threshold encryption
scheme, encrypting each transaction with a key distributed
in parts among several nodes.FairBlock [21] utilizes block-
level encryption, with transactions encrypted by a block-
specific key and decrypted collectively. To our knowledge,
Ferveo [4] is the first scheme which tries to provide fairness
in consensus protocol. It modifies Tendermint protocol with
threshold cryptography to a synchronous BFT protocol with
confidentiality. However, it lacks a formal analysis of its
guarantees, leaving critical aspects of its design unvalidated.

Based on the above discussions, we have the following
research question:

Is it possible to achieve complete fairness at the
consensus protocol without bringing extra latency
and heavy cost?

B. Our contribution

A novel formal definition of the fairness property in
consensus protocols: We define fairness based on the logical
relationship between the decryption of encrypted transactions
and the completion of transaction ordering, rather than the
order in which transactions are observed by participants.
A transaction can be decrypted if and only if it has been
successfully ordered.

Enhanced definitions of liveness and safety for consensus
protocols: The safety property ensures that participants can

reach agreement not only on encrypted transactions but also on
the decryption key. The liveness property guarantees that when
a block is committed, the decryption keys for the transactions
within the block will be recovered.

A concrete framework for converting BFT consensus
protocols with fairness: Our framework which is named as
EquiBFT is compatible with most BFT protocols and does not
impose a heavy communication burden. We have shown that
BFT protocols adapted through our framework can meet our
enhanced definitions of safety and liveness.

It is important to note that integrating encryption algorithms
directly into the consensus process is not trivial. For instance,
completing the consensus process for encrypted transactions
does not ensure the completion of the decryption process.
Particularly during view changes stage, the new leader node
must ensure that proposals that have already completed con-
sensus also complete the decryption process. This additional
requirement may compromise the safety or liveness of the
consensus protocol.

Table I presents a comparison of our proposed scheme
with major existing cryptographic algorithm-based schemes,
excluding those that rely on trusted hardware. In this context,
strong fairness refers to schemes unaffected by the Condorcet
Paradox. Extra round denotes the number of additional mes-
sage interaction rounds necessary post-consensus to ensure
fairness. Asynchronous communication implies that no strict
clock synchronization is needed to assign timestamps.

Protocol Strong fairness Extra round Asynchronous
Aequitas[15] ✗ − ✓
Themis[14] ✗ − ✓

SpeedyFair[22] ✗ − ✓
Pompe[31] ✓ − ✗
Wendy[18] ✓ − ✗

F3B[30] ✓ 1 ✓
FairBlock[21] ✓ 1 ✓

EquiBFT ✓ 0 ✓

TABLE I: Comparison of protocols for achieving fairness.

II. PRELIMINARIES AND MODEL

A. Building Blocks

We will present the basic components needed for the
protocol design. Due to space limitations, we will only give a
brief description of the security properties of the components
and omit rigorous definitions.

1) Hash function: A hash function is a cryptographic
algorithm that converts input data of any length into a fixed-
length hash value. It is designed to be fast, irreversible, and
resistant to collisions as defined in Definition 1.

Definition 1 (Hash Function). A hash function H(·) with
output length m is a deterministic algorithm that takes a string
x ∈ {0, 1}∗ as input and outputs a string h ∈ {0, 1}m.

2) Blockchain: In blockchain systems, the consensus pro-
cess facilitates agreement among nodes to append a new block
to the chain. Each block contains an array of transactions and
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the hash value of the preceding block. Define a block at height
h as Bh(txs,H(Bh−1)), where txs represents the array of
transactions included within the block and H(Bh−1) is the
hash value of previous block. In cases where there is no need to
highlight the block’s height and content, we compactly denote
a block as B.

3) Threshold encryption: Threshold public key encryption
(TPKE) is an important cryptography primitive. The ciphertext
cannot be decrypted unless sufficient number of members
participate in the decryption process. This feature effectively
mitigates risks associated with single point failures or corrup-
tion. It is defined in Definition 2. Please also see [3].

Definition 2 (Threshold Public Key Encryption). A (t, n)
threshold encryption scheme is a set of PPT algorithms with
these specifications.

• (pke, vke, ske)
$← Setup(n, t, λ): The set-up algorithm

takes the number of participants n and a threshold t
where 1 ≤ t ≤ n, and a security parameter λ as inputs. It
outputs a triple consisting of pke, vke and ske. The public
key pke is used for encryption, while the verification
key vke is used for validation. The private key share
ske = (ske1, · · · , sken) is a vector of shares distributed
among the participants.

• C
$← Encrypt(pke,M): The encrypt algorithm encrypts

the plaintext M with the public key pke and outputs a
ciphertext C.

• µi ← ShareDecrypt(pke, i, skei, C): The share-decrypt
algorithm takes the pke, the ith private key skei and the
ciphertext C as inputs and outputs the partial decryption
share µi.

• ϕ ← ShareVerify(pke, vke, C, µi): The share-verify al-
gorithm takes the public key pke, the verification key
vke, and a decryption share µi as inputs. If µi is the
correct share for C, it outputs a boolean value ϕ as true.
Otherwise it outputs false.

• M ← Aggregate(pke, vke, C, {µ1, · · · , µt}): The com-
bine algorithm takes pke, vke, and any t valid decryption
shares {µ1, · · · , µt} as inputs. It outputs the plaintext M
or ⊥.

4) Symmetric Encryption: Symmetric encryption is a type
of encryption scheme where the same key is used for both
encryption and decryption of data. It is defined in Definition 3.
Please also see [12].

Definition 3 (Symmetric Encryption Scheme). A symmet-
ric encryption scheme consists of three PPT algorithms
(Gen,Enc,Dec) such that:

• k
$← Gen(1λ): The key-generation algorithm Gen takes

as input 1λ and outputs a key k.
• C

$← Enc(k,M): The encryption algorithm Enc takes as
input a key k and a plaintext message M ∈ {0, 1}∗, and
outputs a ciphertext C.

• M ← Dec(k,C): The decryption algorithm Dec takes as
input a key k and a ciphertext C, and outputs a message

M ∈ {0, 1}∗ or an error, denoted by the symbol ⊥.

B. Model Formalism

1) BFT Protocol: Byzantine fault tolerant protocols are
becoming more and more important in blockchain [7, 28].
These protocols enable a group of nodes to reach consensus
despite the arbitrary or malicious behavior of some nodes.
The total number of nodes is denoted as n and the number
of Byzantine nodes is denoted as f where n = 3f + 1. The
node set is represented as Φ = {P1,P2, . . . ,Pn}. Each node
processes inputs from the environment and produce a log of
decided values.

2) Network: In our paper, consensus nodes leverage a
point-to-point network for message exchange, ensuring that
all communication channels are both authenticated and re-
liable. The protocol is designed to function under partially
synchronous network conditions, characterized by two key
parameters: Global Stabilization Time (GST) and the network
delay upper bound ∆. GST is an unknown value that rep-
resents the time required for the network to stabilize. The
parameter serves as the upper bound on the maximum delay
for message transmission between two correct nodes. After the
network stabilizes at GST, all transmissions between any two
correct replicas are expected to arrive within the time frame
∆.

3) Corruptions: The adversary, denoted as A, controls up
to f corrupted nodes within the system, which are identified as
Byzantine faulty during initialization, allowing them to exhibit
arbitrary behavior. Within the network, A has the capability
to insert, record, and replay messages. Crucially, however,
messages exchanged between two honest nodes cannot be
tampered with or altered.

4) Environment: To facilitate the execution of the proto-
col, we employ an environment denoted as Z(1λ), where λ
represents the security parameter. The role of Z is to drive
the consensus among nodes. At the start of the execution, Z
initiates the activation of all nodes, both honest and corrupted,
ensuring their participation in the protocol. It then generates
encrypted transactions and transmit them to consensus nodes.
For a given protocol Π, the notation EXECΠ(A,Z, λ) repre-
sents the random variable encompassing all potential execution
traces of Π with respect to the adversary A and environment
Z and λ is security parameter. A view within the support
of EXECΠ(A,Z, λ) refers to a fully specified instance of an
execution trace, including inputs, outputs, random coins, and
any other relevant components of the execution.

C. Properties

The concept of order-fairness [15] is a well-known ab-
straction of fairness, defined by the causal order of network
transmissions. It asserts that if a majority of nodes receive
transaction tx1 before transaction tx2, then tx1 should be
output prior to tx2. This concept, however, faces the challenge
of the Condorcet paradox, where cyclic order dependencies
among three or more transactions prevent establishing a defini-
tive transaction order. While numerous research efforts address
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this issue from different angles, proposed solutions often lead
to increased communication complexity.

Our protocol maintains fairness by encrypting the transac-
tions. This encryption provides confidentiality, thereby pro-
hibiting adversaries from manipulating the order of trans-
actions for their benefit. As such, all participants enter the
consensus process on equal footing, unaware of the spe-
cific transaction details until an ordering agreement has been
reached. It is only post this agreement that the content of the
transactions is disclosed.

1) Fairness: In EquiBFT, the content of a transaction is
revealed only after it has been ordered. First, we define the
ordering of a transaction.

Definition 4 (A transaction is ordered). For a view in the
support of EXECΠ(A,Z, λ), let tx be a transaction generated
by Z and sent to a replica P . We define that transaction tx

is ordered by ⟨i, j⟩ if it will be eventually output by every
honest node as the j-th transaction of the i-th block.

When the ordering of a transaction satisfies the following
relationship with decryption, it is called fair ordering. We use
t̃x to denote the encrypted version of transaction tx. That is,
t̃x

$← Enc(k, tx) where k is an encryption key.

Definition 5 (Fairness). For a view of EXECΠ(A,Z, λ), let
t̃x be a transaction generated and encrypted by Z . We define
that Π satisfies fairness if an encrypted transaction t̃x can be
decrypted by any replica P only if tx is ordered.

2) Liveness and safety: BFT protocols are designed to
ensure that honest nodes generate consistent outputs for user
requests, a goal typically defined by the properties of safety
and liveness. However, these classical definitions are inade-
quate for EquiBFT. In EquiBFT, transactions are encrypted
when they are sent out. Therefore, the protocol’s obligations
extend beyond guaranteeing the liveness and safety of en-
crypted transactions; it must also ensure that all honest nodes
can accurately decrypt the transactions and that the decrypted
outputs are consistent across nodes. The liveness and safety
of EquiBFT are defined as following:

Definition 6 (Liveness). After GST, honest nodes will com-
plete consensus on the new block. Transactions sent by honest
clients within the block can be decrypted by honest nodes.

Definition 7 (Safety). If a correct node P1 has decided
on blocks B1, B2, . . . , Bs, and another correct node P2 has
decided on B′

1, B
′
2, . . . , B

′
s, then Bi = B′

i for 1 ≤ i ≤ s. If
transaction tx is decrypted from the j-th encrypted transaction
in block Bi by P1, and tx′ is decrypted from the j-th
encrypted transaction in block B′

i by P2, then tx = tx′.

III. BFT CONSENSUS PROTOCOL WITH FAIRNESS

In this section, we introduce EquiBFT, a framework de-
signed to enhance BFT consensus protocols with fairness.
We achieve fairness by integrating a threshold public key
encryption scheme [1] into the consensus protocol.

A. BFT Consensus Protocol Paradigm

From a system perspective, leader-based Byzantine Fault
Tolerance (BFT) protocols possess structural similarities in
blockchain generation. Within a consensus view, the process
encompasses four phases: proposing, voting, execution, and
view change, as illustrated in Fig 1.

Proposing                                     Voting                                  Execution        View change      

Replica

Leader

Replica

Replica

......

Multi rounds Lock                  Commit

Fig. 1: The structure of leader-based BFT protocols. The blue
lines represent the decryption message which will be used in
EquiBFT.

• Proposing: The leader node packages the received trans-
actions into a proposal block and sends it to consensus
nodes. It is important to note that the new proposal block
must not conflict with other blocks that have already
reached consensus.

• Voting Consensus nodes engage in multiple rounds of
voting on the proposal block. After each round, nodes
update their state to facilitate consensus among honest
nodes. The number of voting rounds can vary across pro-
tocols. Typically, if a proposed block completes specific
rounds of voting, it enters a locked state. A block in
this locked state is committed via a final voting round,
ensuring consensus among all honest nodes. Importantly,
once a block is locked, it will eventually be committed,
and subsequent proposal blocks must not conflict with
locked blocks.

• Execution Consensus nodes execute the transactions
contained within the committed block. Generally, this
step lies outside the core consensus protocol, focusing
instead on processing the consensus data. We deliberately
distinguish the execution process here because, within our
framework, it is crucial to ensure that consensus nodes
can accurately execute encrypted transactions.

• View Change This phase facilitates the transition to a
new leader node for achieving consensus in the subse-
quent view. The new leader must generate a proposal
block at the next height following the previous decided
block. The view change mechanism ensures that the
new leader can receive the latest locked block. Various
protocols implement the view change process differently,
and some may not include it at all. For instance, in
the Casper protocol [5], which assumes a synchronous
network, the view change is not explicitly defined.

Abstracting away the specifics of individual protocols, BFT
consensus protocols can be uniformly represented as shown
in Algorithm 1. The function CreateLeaf(parent, TXS) in
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the proposing phase is used to extend a new block which is
defined in Algorithm 2.

Algorithm 1 BFT consensus protocol

▷ Proposing Phase
1: as a leader
2: wait for n− f NEW-VIEW messages V
3: lockedB ← extract the highest locked block from V
4: B ← CreateLeaf(lockedB, TXS)
5: broadcast B

▷ Voting Phase (multi rounds)
6: while B is not locked do
7: as a replica

vote for B if it is correct
8: as a leader

push the voting phase for B
9: end while

10: lockedB ← B
11:
12: as a replica Pi

vote COMMIT for B if it is correct
13: as a leader
14: wait for n− f valid COMMIT votes for B
15: broadcast DECIDE message
16:
17: as a replica
18: Execute the transactions in B

▷ View Change ▷ Goto this line if timeout
19: as a replica
20: send NEW-VIEW message to leader of next view

B. Transaction Encryption

Our framework, EquiBFT, utilizes a threshold public key
encryption (TPKE) scheme to safeguard user transactions.
Consensus nodes are required to pre-share encryption key
shares, while clients encrypt their transactions with a sym-
metric key, which is encapsulated by the corresponding public
key when sending them.

The pre-sharing setup phase incurs a one-time cost and
need only be executed once. However, it can be refreshed
periodically to enhance security or accommodate membership
changes. To ensure robust protection, each transaction is en-
crypted with a unique symmetric key, preventing the compro-
mise of one transaction from jeopardizing the confidentiality
of other uncommitted transactions.

1) Consensus Nodes: The consensus nodes initialize the pa-
rameters of TPKE scheme as: pke, vke, ske $← Setup(n, t, λ).
The generated public key pke and the verification key vke
are made publicly available as global parameters. Clients
can use pke to encrypt transactions. Each consensus node
Pi obtains a unique private key share skei of ske, which
remains confidential and is used for threshold decryption. The
verification key vke serves to confirm the validity of decryption
shares received from consensus nodes.

In EquiBFT, given the number of byzantine nodes f , the
total number of nodes n = 3f + 1, let t = 2f + 1 be the
threshold of decryption of TPKE.

2) Clients: A client retrieves the public key pke of TPKE
to encrypt transactions using a hybrid encryption scheme. In
addition to the TPKE scheme, the client employs a symmet-
ric encryption scheme Π = (Gen,Enc,Dec). To encrypt a
transaction tx, the client randomly generates a symmetric key
k

$← Gen(1λ) and encrypts tx as t̃x
$← Enc(k, tx). The

symmetric key k is then encrypted using the global TPKE

public key pke, resulting in k̃
$← Encrypt(pke, k).

A valid encrypted transaction is then structured as ctx =
⟨t̃x, k̃⟩ and sent to the consensus nodes. These encrypted
transactions sent by the clients also include their signatures
to verify the validity of the transactions, which is the same as
regular transactions. Although consensus nodes cannot validate
the content of a encrypted transaction upon reception, the
system mitigates abuse by charging a gas fee, which deters
malicious clients from arbitrarily flooding the system with
invalid encrypted transactions. For simplicity, we omit the
details of signature verification in the protocol description. The
encryption scheme ensures fairness by maintaining the confi-
dentiality of transactions throughout the subsequent consensus
phases.

C. Auxiliary functions

Consensus nodes use the auxiliary functions in Algorithm 2
to process the messages.

1) Blocks extension: The leader node creates a block ex-
tending the parent block parent by utilizing the function
CreateLeaf(parent, TXS) in Line 1 Algorithm 2, where
TXS represents a set of transactions selected from the transac-
tion pool.

2) Commit Message Verification: The leader node verifies
the decryption shares in the COMMIT messages it receives
through the function VerifyCommit(v,B) in Line 5 Algo-
rithm 2. This function checks the correctness of the decryption
shares. If the verification is unsuccessful, the COMMIT mes-
sage is deemed invalid.

3) Keys aggregation: The symmetric keys used for trans-
action encryption are encrypted with the public key pke of
TPKE. Consensus nodes include key recovery shares in their
voting messages. When the leader collects n−f votes, denoted
as V , they can employ AggregateKey(V,B) in Line 10
Algorithm 2 to recover the symmetric keys for the encrypted
transactions in block B. The collected set of votes is appended
to the block as proof.

4) Transaction verification and decryption: Upon receiving
the DECIDE message, consensus nodes verify the decryption
keys keys and decrypt the transactions in block B using
VerifyDecryptTXS(keys,B) in Line 17 Algorithm 2.
The keys for proof are aggregated from the original set of
votes attached to the block to verify the correctness of the
leader’s key recovery. For each encrypted transaction ctxj in
the block, the decryption key is validated with the recovered
keys. If the decryption key matches the recovered one, the
encrypted transaction is decrypted using the provided key. If
the validation fails, the function returns false.
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Algorithm 2 Auxiliary functions for a node Pi

1: Func CreateLeaf(parent, TXS)
2: B.parent← parent
3: B.txs← TXS
4: return B

5: Func VerifyCommit(v,B)
6: for ctxj ∈ B.txs do
7: if (ShareVerify(pke, vke, ctxj .k̃ , v.µj) = false then
8: return false
9: return true

10: Func AggregateKey(B)
11: V ← B.proof
12: for ctxj ∈ B.txs do
13: µ← {vi.µj |vi ∈ V }
14: kj ← Aggregate(pke, vke, ctxj .k̃ , µ)
15: keys← keys ∪ {kj}
16: return keys

17: Func VerifyDecryptTXS(keys,B)
18: V ← B.proof
19: for v ∈ V do
20: if (VerifyCommit(v,B) = false) then
21: return false
22: txs← ∅
23: proof keys← AggregateKey(B)
24: for ctxj ∈ B.txs, kj ∈ keys do
25: if proof keysj ̸= kj then
26: return false
27: txj ← Dec(kj , ctxj .t̃x)
28: txs← txs ∪ {txj}
29: B.txs← txs
30: return true

D. Framework Incorporating BFT Consensus Protocol with
Fairness

Our framework, EquiBFT, is detailed in Algorithm 3. The
distinctions from the original BFT protocol, as shown in
Algorithm 1, are highlighted in blue color.

1) Proposing: In the proposing stage, the leader must
ensure that the current highest locked block, lockedB, has
been successfully decrypted before constructing a new block
to extend the blockchain. If lockedB has not been decrypted,
the leader is required to re-propose lockedB as specified in
Line 4 Algorithm 3. This method differs from traditional BFT
protocols such as HotStuff, which merely require that new
proposals follow lockedB. This strategy mandates that the
locked block is decrypted.

2) Voting: The voting phase adheres to the standard process
outlined in the original BFT protocol, culminating in the
locking of the proposal with an additional verification step.
Each node must verify whether the locked block has been
decrypted when evaluating the proposal’s validity. If it has not,
the current proposal must be the re-proposed locked block;
otherwise, the node will refuse to vote on the proposal.

In the final voting round, after the block is locked, each
node includes its decryption share for the decryption keys
within its voting message. Specifically, node Pi performs the
share decryption for every encrypted transaction ctxj in the

block using its private key skei of the TPKE scheme as
µj ← ShareDecrypt(pke, i, skei, ctxj .k̃) in Line 16 Algo-
rithm 3. The consensus node Pi compiles its decryption shares
into a vector µ as µ← [µ1, µ2, · · · , µβ ]. Then, Pi attaches this
vector to the COMMIT message and sends it to the leader node.

The leader will perform additional verification to ensure the
correctness of the decryption shares received from nodes using
VerifyCommit(v,B) in Line 23 Algorithm 3. If the verifi-
cation fails, the leader will reject the corresponding COMMIT
vote. Upon receiving n − f valid COMMIT votes, the leader
recover the symmetric keys for the encrypted transactions in B
using AggregateKey(B) in Line 25. The votes are included
in the block B so that all the consensus nodes can verify the
keys are recovered properly by the leader node.

3) Execution: During the transaction execution phase, con-
sensus nodes use auxiliary votes included in the DECIDE
message to verify the accuracy of the key recovery process
in Line 30 Algorithm 3. Subsequently, nodes employ the keys
obtained from the leader node to decrypt the transactions. If
key recovery verification fails, the block must be re-proposed.

4) View Change: During the view change phase, nodes send
the local block that has completed specific rounds of voting.
They also indicate the status of the decryption process within
the view change messages. If the locked block is successfully
decrypted, the associated decryption keys are included with the
message. Conversely, if the locked block remains undecrypted,
the message will explicitly indicate this status.

Algorithm 3 BFT protocol incorporating fairness for a node Pi

with signature key share ski and decryption key share skei

▷ Proposing Phase
1: as a leader
2: wait for n− f NEW-VIEW messages V
3: lockedB ← extract the highest locked block from V
4: if lockedB is decrypted then
5: B ← CreateLeaf(lockedB, TXS)
6: else
7: B ← lockedB
8: broadcast B

▷ Voting Phase
9: while B is not locked do

10: as a replica
if lockedB ̸= B then

assert lockedB is decrypted
vote for B (multi rounds) if it is correct

11: as a leader
push the voting phase for B (multi rounds)

12: end while
13: lockedB ← B
14:
15: as a replica Pi

16: for ctxj ∈ B.txs do
17: µj ← ShareDecrypt(pke, i, skei, ctxj .k̃)
18: µ← µ ∪ {µj}
19: attach µ to COMMIT vote
20: vote COMMIT for B if it is correct
21: as a leader
22: wait for (n− f) valid COMMIT votes V for B:
23: V ← {v | VerifyCommit(v,B) = true, v ∈ V }
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24: B.proof ← V
25: keys← AggregateKey(B)
26: attach keys to DECIDE message
27: broadcast DECIDE message
28:
29: as a replica
30: if VerifyDecryptTXS(keys,B) = true then
31: Execute the transactions in B

▷ View Change ▷ Goto this line if timeout
32: as a replica
33: send NEW-VIEW message to leader of next view

IV. ANALYSIS

In this section, we analyze the liveness, fairness, and safety
properties of the framework. We assume that the original BFT
protocol, as described in Algorithm 1, ensures the liveness and
safety of consensus as defined in Definition 8 and Definition 9.

Definition 8 (Liveness of consensus). After GST, a consensus
of block will be decided by correct nodes for a period of time.

Definition 9 (Safety of consensus). If a correct node P1 has
decided blocks B1, B2, · · · , Bs and another correct node P2

has decided B′
1, B

′
2, · · · , B′

s′ , then Bi = B′
i for 1 ≤ i ≤

min(s, s′).

Due to space constraints, we provide only a sketch of the
proof.

A. Liveness
We first prove that honest nodes can reach consensus on

proposals containing encrypted transactions. Compared to the
original BFT, the modified protocol guarantees that locked
blocks be decrypted. Therefore, if a locked block has not
been decrypted yet, the leader node should repropose this
block. If the locked block has been decrypted, the leader
node can generate new blocks following it. In either of the
above scenarios, the blocks proposed by the leader node do
not conflict with those proposed in the original BFT protocol.
Therefore, if the leader node is honest and the original BFT
protocol possesses liveness, then modified protocol also has
consensus liveness.

Lemma 1 (Liveness of consensus). After GST, there is a
bounded duration Tf such that if all correct nodes remain in
view v during Tf and the leader for view v is correct, then a
block is locked.

Proof. The proof can be directly derived from the liveness of
the original BFT.

Next, we prove that if the leader node is honest, the
encrypted transactions contained in the committed block can
be decrypted correctly. In Lemma 2, it is proved that if the
leader node collects enough COMMIT votes, the key used by
clients for encrypting transactions will be recovered.

Lemma 2. Let TPKE be a verifiable threshold encryption
scheme. If a correct leader gathers (n−f) valid COMMIT votes
on a block B, he can recover the keys for the transactions in
B such that VerifyDecryptTXS(keys,B) = true.

Proof. The validity of a COMMIT vote v is determined by
VerifyCommit(v,B) in Line 23 Algorithm 3. The leader
checks whether the decryption shares of TPKE in v are
correctly decrypted by the replicas.

Consequently, upon receiving (n− f) valid COMMIT votes,
the leader can extract 2f+1 valid decryption shares from these
votes for every transaction ctx, meeting the TPKE decryption
threshold. The leader attaches the votes to B.proof . In the
AggregateKey function in Line 25 Algorithm 3, the leader
can accurately recover the decryption key kj from these 2f+1
decryption shares for each encrypted transaction ctxj . The
recovered keys form a set denoted as keys.

Upon receiving the keys from the DECIDE message, the
replicas verify and decrypt the transactions in the block
using the function VerifyDecryptTXS(keys,B). For each
encrypted transaction, the votes set V in B.proof , provided by
the leader, will be used to aggregate the exact same key kj as
recovered by the leader. If the leader is correct, the decryption
key must be correctly recovered. Consequently, it holds that
VerifyDecryptTXS(keys,B) = true.

In Lemma 3, it is proved that if the leader node is honest,
all honest nodes can obtain the correct key to decrypt the
transactions.

Lemma 3 (Liveness of decryption). Let TPKE be a veri-
fiable threshold encryption scheme. After GST, there exists a
bounded duration Tf during which all correct nodes remain in
view v, and the leader for view v is correct. During this period,
any committed block will have its encrypted transactions from
honest clients successfully decrypted.

Proof. Once an honest node becomes the leader of a view and
all correct nodes remain alive after GST for a sufficient period,
by Lemma 1, the leader can drives the view through multiple
voting phases by collecting votes and broadcasting messages
to lock the proposal.

In the COMMIT phase, since the leader is honest, it re-
covers the keys upon receiving (n − f) valid COMMIT
votes and broadcasts the DECIDE message to all nodes.
By Lemma 2, the nodes can complete the verification by
invoking VerifyDecryptTXS(keys,B) = true. For an
honest client he must encrypt the correct key using TPKE.
The key is then used to decrypt the encrypted transactions.
Consequently, all transactions from honest clients in the block
are successfully decrypted.

Lemmas 1 and 3 collectively establish the liveness prop-
erties of EquiBFT. Specifically, Lemma 1 ensures that correct
nodes will eventually reach a decision on a block, while
Lemma 3 guarantees that the decryption of committed blocks
proceeds without obstruction. Together, these lemmas demon-
strate the liveness of our protocol, as articulated in Theorem 1.

Theorem 1 (Liveness). Let TPKE be a verifiable threshold
encryption scheme. Protocol ΠEquiBFT satisfies liveness (Defi-
nition 6).
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Proof. After GST, there is a bounded duration Tf such that if
all correct nodes remain in view v during Tf and the leader for
view v is correct, then by Lemma 1, a decision of a block is
reached. Additionally, by Lemma 3, under such circumstance,
the transactions from honest clients in the committed block
can be decrypted.

B. Safety

First, we demonstrate that EquiBFT ensures the safety of
consensus, meaning that two conflicting blocks,i.e., blocks at
the same height, cannot be committed simultaneously. Within
EquiBFT, the voting principles for consensus nodes mirror
those in the original BFT protocol. As a result, conflicting
blocks cannot simultaneously receive votes from honest nodes,
which prevents two honest consensus nodes from finalizing
consensus on conflicting blocks.

Lemma 4 proves that if two blocks are conflicting, it is
impossible for honest nodes to reach consensus on both blocks,
thereby ensuring the safety of block consensus.

Lemma 4. (Safety of consensus) If B1 and B2 are two
conflicting blocks, they cannot be both committed, each by
a correct node.

Proof. The proof can be directly derived from the safety of
the original BFT.

Then we prove the safety of the decryption process for
transactions within a committed block in Lemma 5. Any
validly decrypted block will contain the same decryption keys.

Lemma 5 (Safety of decryption keys). Let TPKE be a
verifiable threshold encryption scheme. Suppose two correct
nodes P and P ′ receive sets of decryption keys, denoted as
keys and keys′, respectively, from a DECIDE message for
a block B. If VerifyDecryptTXS(keys,B) = true and
VerifyDecryptTXS(keys′, B) = true, then keys must
equal keys′.

Proof. Suppose B contains β encrypted transactions, then
keys and keys′ each contain β decryption keys. If
VerifyDecryptTXS(keys,B) = true then each kj ∈
keys pass the verification. The proof keys are recovered
from the shares which are attached in the block B and the
shares are verified in in Algorithm 2 Line 20. With the property
of TPKE, P and P ′ recover the same proof keys.

We have proof keysj = kj and proof keysj = k′j as in
Algorithm 2 Line 25. That is we have kj = k′j . Therefore, we
conclude that keys = keys′.

From Lemma 4 and Lemma 5, we derive the following
theorem.

Theorem 2 (Safety). Let TPKE be a verifiable threshold
encryption scheme. Protocol ΠEquiBFT satisfies safety (Defi-
nition 7).

Proof. If B1 and B2 are both committed at the same height
by any two honest nodes P1,P2, then by Lemma 4, we have
B1 = B2, thereby ensuring the consistency of the ciphertext of

the transactions of a committed block for all participants. By
Lemma 5, B1 and B2 at the same height have identical keys.
Therefore, the decrypted transactions of P1 and P2 remain the
same.

C. Fairness

Fairness is a critical property of EquiBFT, ensuring re-
silience against front-running attacks. In EquiBFT, we uphold
fairness by demonstrating that every transaction is ordered
before decryption, and once decrypted, its order remains
immutable. This property safeguards against any participant
unfairly influencing transaction order, thereby maintaining an
equitable environment for all participants.

In Lemma 6, we prove that if a node can decrypt the
transactions in a block, then at least f + 1 honest nodes are
already locked on that block. In Lemma 7, we prove that if
a block has f + 1 honest nodes locked on it, then the block
will be committed. The statements of these two lemmas are
provided as follows.

Lemma 6. Let TPKE be a verifiable threshold encryption
scheme. If an encrypted transaction ctx in a block B can be
decrypted by any party Pi, then at least f + 1 honest nodes
is locked with lockedB = B.

Proof. Since the decryption threshold of TPKE is 2f + 1, at
least f + 1 decryption shares for the decrypted transaction
come from honest nodes. Furthermore, because honest con-
sensus nodes will only contribute their decryption shares after
being locked into the block, it follows that at least f+1 honest
nodes must be locked into that block.

Lemma 7. If at least f+1 honest nodes are locked on a block
B such that lockedB = B and B is uncommitted, then B will
be committed as the next block.

Proof. For there are already f + 1 honest nodes locked onto
block B, then any proposal B′ which is conflicting with B will
not be voted by these f + 1 honest nodes. That is any block
B′ ̸= B will not be committed. We have prove the liveness of
EquiBFT in Theorem 1 the next committed block must be B.

We deduce relation between block decision and transaction
ordering as stated in Corollary 1.

Corollary 1. If a block B will be committed as the next block,
then the transactions in block B are already ordered.

Proof. Since no block can be committed before the block B,
it is evident that the transactions in B will be committed in
the exact order as it appear in the block.

Our protocol guarantees no decryption happens prior to the
finalization of a transaction. If a transaction can be decrypted,
the consensus system must have reached a status where the
transaction is already ordered. Together, these lemmas culmi-
nate in Theorem 3, affirming that EquiBFT achieves fairness.
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Theorem 3 (Fairness). Let TPKE be a verifiable threshold
encryption scheme. Protocol ΠEquiBFT satisfies fairness (Defi-
nition 5).

Proof. For a view in the support of EXECΠEquiBFT(A,Z, κ), for
every encrypted transaction ctx issued by Z , by Lemma 6,
once it can be decrypted, at least f + 1 honest nodes are
locked on the corresponding block. According to Lemma 7,
this block will be committed as the next block. By Corollary 1,
we deduce that this transaction is already ordered. Therefore,
if ctx.t̃x can be decrypted, it is already ordered.

V. EVALUATION

In this section we show the implementation of our frame-
work. The experiments are primarily aimed at validating the
feasibility of the fair consensus protocol rather than conducting
a comprehensive performance test.

A. Setup

1) Implementation: We have implemented our framework
EquiBFT based on the open-source library ‘libhotstuff‘
of HotStuff [28]. We incorporate the threshold encryption
scheme from [1] and utilize its practical implementation as de-
tailed in [24]. For transaction encryption, we employ a hybrid
approach where each transaction is encrypted using AES-256,
and the encryption key is encapsulated with the TPKE scheme.
For benchmarking purposes, we also implement F3B [30] that
employs threshold encryption at the application layer, using
HotStuff as its underlying consensus protocol. The decryption
committee is composed of consensus nodes.

2) Experiment settings: Our experiments were conducted
on Amazon EC2 using C5.4xlarge instances, each equipped
with 16 vCPUs and 32 GB of memory. The performance
evaluations were performed in a geo-distributed setting, with
consensus nodes evenly distributed across four regions: Vir-
ginia (us-east-1), California (us-west-1), Tokyo (ap-northeast-
1), and Frankfurt (eu-central-1). Our experiments explored
varying block sizes and the number of nodes, with transactions
generated and sent to the consensus nodes by clients in a back-
loop manner. Each data point captures the system’s saturated
performance and represents the average of three experimental
runs to ensure statistical reliability.

We measured and reported the throughput and latency of
EquiBFT while comparing these metrics to those of F3B.
Additionally, we implemented HotStuff to evaluate the per-
formance decline margin relative to EquiBFT. Furthermore,
we conducted experiments simulating malicious attacks, where
clients send invalid transactions. As discussed in Section IV,
these attacks do not compromise the safety of the protocol and
cause only a similar level of impact as observed in HotStuff.
Due to space limitations, we omit graphical representations of
these results.

B. Experiment Results

In the legend, we use ‘F3B-‘ and ‘EB-‘ to represent the
protocol F3B and EquiBFT, respectively. The block sizes
which are denoted as ‘B50‘, ‘B100‘, ‘B200‘, and ‘B400‘ to

present the number of transactions in each block. Additionally,
experiments were conducted with 4 nodes (‘N4‘), 8 nodes
(‘N8‘) and 16 nodes (‘N16‘) to measure the scalability of
protocols.

1) Throughput: We start by analyzing the throughput of the
protocols under varying numbers of nodes. Figure 2a illustrates
the max throughput as the block size increases from 50 to 400
across configurations with 4, 8, and 16 nodes. Both EquiBFT
and F3B exhibit an almost linear growth in throughput as the
block size expands. For block sizes below 200, the two proto-
cols demonstrate comparable throughput performance because
of the pipeline structure. However, as the block size exceeds
200, EquiBFT achieves slightly higher throughput than F3B,
with the performance gap widening as the block size continues
to grow. Additionally, as the number of nodes increases, the
rate of throughput improvement diminishes. Notably, F3B
shows a slower growth rate compared to EquiBFT under these
conditions.

2) Latency: We evaluated the latency of the two protocols
under varying numbers of nodes and block sizes ranging
from 50 to 400. As shown in Figure 2b, EquiBFT achieves
latency that is approximately 60-70% of that observed in
F3B. While both protocols experience increased latency as the
block size grows, EquiBFT consistently outperforms F3B with
lower latency, and the gap widens as the block size increases.
Notably, the latency increase in EquiBFT is more gradual
compared to F3B.

The latency advantage of EquiBFT stems from its de-
sign, where the decryption process and block commitment
are completed within the same round of message exchange,
eliminating additional time delays. In contrast, F3B requires
an extra step of decryption message propagation which takes
around 100 milliseconds after block consensus is reached,
resulting in higher latency. Under transaction saturation, both
protocols achieve similar throughput, largely due to their
pipeline structures that enable the output of a committed block
in every communication round. However, the extra round of
decryption message propagation in F3B leads to a higher end-
to-end latency.
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Fig. 2: Throughput and latency comparison between EquiBFT
and F3B with different block size.

3) Scalability: We conducted further evaluations to assess
the throughput and latency performance of EquiBFT in 4-node,
8-node, and 16-node network configurations. The results in
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Fig 3 indicate that as the network scale increases, EquiBFT
demonstrates better scalability compared to F3B. Specifically,
using the 4-node configuration as a baseline, EquiBFT’s
throughput decreases to 85% of the baseline when the network
expands to 8 nodes, with a latency increase of approximately
10%. When the network grows to 16 nodes, its throughput
drops to 70% of the baseline, while latency increases by 40%.
In contrast, F3B exhibits a more pronounced performance
decline as the number of nodes increases; its throughput falls
to 70% of the baseline value in the 8-node configuration and
approximately 40% in the 16-node configuration. Furthermore,
F3B’s latency increases by 15% in the 8-node configuration
and nearly doubles in the 16-node configuration.
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Fig. 3: Throughput and latency comparison between EquiBFT
and F3B with different number of nodes.

These results suggest EquiBFT and F3B both encounter
a reduction in throughput as the network scales up. This
decline is attributed to the increased time ranging from tens
to hundreds of milliseconds required for threshold decryption
processes, which involve verifying and aggregating decryption
shares. Since EquiBFT completes the decryption of transac-
tions simultaneously with the consensus process at the consen-
sus layer without requiring additional time for the decryption
process, EquiBFT exhibits better scalability, a conclusion that
is also validated by experimental results.

VI. CONCLUSION

In this paper, we investigate the fairness problem of Byzan-
tine consensus protocols in blockchain. We define the fairness
of consensus protocols based on the logical relationship be-
tween the transactions ordering and decryption, introducing it
as a new property of consensus protocols alongside liveness
and safety. We extend the properties of liveness and safety
in consensus protocols to encompass not only the consensus
process of encrypted transactions but also the decryption

process. Based on the existing BFT protocol and utilizing
threshold encryption algorithms, we designed a framework
called EquiBFT which can incorporate fairness to BFT pro-
tocols. We prove that EquiBFT satisfies fairness, liveness,
and safety. Based on the well-known HotStuff protocol we
implement the framework and evaluate the effectiveness of
the protocol through experiments.
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