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ABSTRACT
We propose the first two-round multi-party signing protocol for

the Elliptic Curve Digital Signature Algorithm (ECDSA) in the

threshold-optimal setting, reducing the number of rounds by one

compared to the state of the art (Doerner et al., S&P ’24). We also

resolve the security issue of presigning pointed out by Groth and

Shoup (Eurocrypt ’22), evading a security loss that increases with

the number of pre-released, unused presignatures, for the first time

among threshold-optimal schemes.

Our construction builds on Non-Interactive Multiplication (NIM),

a notion proposed by Boyle et al. (PKC ’25), which allows parties

to evaluate multiplications on secret-shared values in one round.

In particular, we use the construction of Abram et al. (Eurocrypt

’24) instantiated with class groups. The setup is minimal and trans-

parent, consisting of only two class-group generators. The signing

protocol is efficient in bandwidth, with a message size of 1.9 KiB at

128-bit security, and has competitive computational performance.
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1 INTRODUCTION
In a (𝑡, 𝑛) threshold signature scheme [28], the signing key is secret-

shared among 𝑛 parties, and to issue a signature, a subset of at least

𝑡 parties have to collaboratively interact. Threshold signatures are
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especially useful in cryptocurrency wallets for the extra security

they provide. To forge signatures, an adversary has to corrupt 𝑡

parties, which is much harder than in the single-party case. In

recent years, threshold ECDSA has received extensive attention

[35, 34, 43, 29, 15, 16, 33, 27, 53, 2, 8, 17, 50, 10, 52, 49, 30, 32, 25, 26,

46, 36], as ECDSA is a long-standing NIST standard and is widely

adopted across major blockchains.

The Quest for Fewer Rounds.We consider the threshold-optimal

setting, where the threshold 𝑡 can be chosen arbitrarily from 2 to

𝑛. In this most general case, the earliest practical constructions

by Gennaro and Goldfeder [34] and Lindell and Nof [43] require

eight rounds of interaction. This was later improved to four rounds

by Canetti et al. [15], and more recently, a three-round protocol

was introduced by Doerner et al. [30], which remains the state

of the art. In contrast, simple and efficient two-round threshold

Schnorr schemes are already known [41, 6], naturally prompting

the question:

Is a practical two-round threshold ECDSA proto-
col possible?

Due to the inherent complexity of ECDSA, this question has

remained unresolved. Recent advances by Boneh et al. [9] and

Adjedj et al. [4] have demonstrated two-round protocols in the two-

party setting, but extending these results to the general multi-party

case remains an open challenge.

Handling Many Presigning Sessions Securely. Many threshold

ECDSA schemes since [15, 26] leverage preprocessing to minimize

signing latency. The signing protocol is split into an offline presign-
ing phase – run before the message to be signed is known – and

an online phase. Ideally, presigning should dominate the total cost,

and the online phase should be fast and non-interactive: each signer

sends one protocol message upon receiving the signing input, and

the messages are publicly combined into the signature output.

However, an analysis by Groth and Shoup [37] shows that secu-

rity degradeswhen toomany presigning sessions are run in advance.

Specifically, for each prematurely revealed 𝑅 value (presignature),

if the adversary can find two message hashes whose ratio hits one

of polynomially many special values, it can forge a signature. As a

result, the security that existing threshold ECDSA schemes with

presigning can possibly achieve is worse than that of plain ECDSA.

An additional assumption on the hash function must be introduced,

which is not needed for plain ECDSA. Moreover, this weakness

completely breaks any scheme that both performs presigning and

admits signing raw message hashes at the same time.

Some mitigations have been incorporated in two-party [4] and

honest-majority [36] schemes. However, in the threshold-optimal
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setting, existing schemes can only address this issue by limiting

the number of presigning sessions, resulting in an unsatisfactory

trade-off between security and efficiency. The full version of [30]

warns that “presigning should only be used in practice by those

who understand and accept the implications and risks associated

with it.” The performance cost of giving up presigning is high, and

it would be preferable if one can implement presigning without

such concerns.

Our Results. We present the first two-round threshold ECDSA

protocol in the threshold-optimal, multi-party setting. This provides

an affirmative answer to the motivating question, which is open

since Doerner et al. [30] and recently highlighted by Boneh et al. [9].

Moreover, our protocol is the first in the threshold-optimal setting

that is immune to the attack surface revealed in [37], reclaiming

the full efficiency of presigning.

1.1 Technical Overview
We begin with essential background, followed by a high-level

overview of our solution. We then discuss the efficiency of our

scheme in comparison to prior work.

ECDSA. Let G be an elliptic curve group generated by 𝑔 of prime

order𝑞. Let𝑥 ∈ Z𝑞 be the signing key, and𝑋 = 𝑔𝑥 be the verification

key. To sign a message, the SHA-2 hash of which is𝑚 ∈ Z𝑞 , one
chooses a random nonce 𝑘 ∈ Z𝑞 , computes 𝑅 = 𝑔𝑘 , and sets 𝑟 to

be the 𝑥-coordinate of 𝑅, i.e., 𝑟 := 𝑅 |𝑥-axis. The signature is (𝑟, 𝜎)
where 𝜎 = 𝑘−1 (𝑚 + 𝑟𝑥) mod 𝑞.

Baseline Threshold ECDSA. In threshold ECDSA schemes, both

𝑥 and 𝑘 are secret-shared among parties and cannot be known by

anyone (since knowing 𝑘 allows recovery of 𝑥 ). Computing 𝜎 thus

requires multi-party computation of inversion and multiplication

on shared secrets. This is more complex than in threshold Schnorr

signatures, where secrets are simply linearly combined.

Our starting point is the scheme of Doerner et al. [30]. Let each

party 𝑖 hold an additive share 𝑥𝑖 of the secret key 𝑥 = 𝑥1 + · · · + 𝑥𝑡
across a quorum of 𝑡 parties. Signing proceeds in three rounds:

• Round 1: Each party 𝑖 samples random 𝑘𝑖 and 𝛾𝑖 , commits to 𝑔𝑘𝑖 ,

and initiates Oblivious Linear Evaluation (OLE) with all others

using input 𝛾𝑖 .

• Round 2: Party 𝑖 responds to each OLE instance, so each ordered

pair (𝑖, 𝑗) obtains additive shares of 𝑘𝑖𝛾 𝑗 and 𝑥𝑖𝛾 𝑗 . Parties each
decommit 𝑔𝑘𝑖 , making 𝑅 = 𝑔𝑘 and 𝑟 = 𝑅 |𝑥-axis public, where
𝑘 =

∑
𝑖 𝑘𝑖 . Each party locally aggregates to obtain additive shares

(𝑘𝛾)𝑖 and (𝑥𝛾)𝑖 of products 𝑘𝛾 and 𝑥𝛾 , where 𝛾 =
∑
𝑖 𝛾𝑖 .

• Round 3: Given message hash𝑚, each party sends𝑚𝛾𝑖 + 𝑟 (𝑥𝛾)𝑖
and (𝑘𝛾)𝑖 . Combining them gives 𝛾 (𝑚+𝑟𝑥) and 𝑘𝛾 , then dividing
yields 𝜎 = 𝑘−1 (𝑚 + 𝑟𝑥).
Many schemes use OLE to share multiplication results. Typically,

OLE is realized in two rounds using Homomorphic Encryption or

Oblivious Transfer. In such a protocol, Bob inputs 𝑏 in round one;

Alice inputs 𝑎 in round two; the output satisfies 𝑐 + 𝑑 = 𝑎𝑏, with 𝑐

and 𝑑 held by Alice and Bob, respectively.

Non-Interactive Multiplication. Towards two-round threshold

signing, we leverage a key tool stemming from Homomorphic Se-

cret Sharing (HSS). Abram et al. [3] proposed an elegant way for two

parties to evaluate one multiplication on additively secret-shared

values in one round. This scheme is initially branded as Bilinear

HSS, and also fits a later refined notion of Non-Interactive Multipli-

cation (NIM) by Boyle et al. [12]. The underlying technique relies

on a Distributed Discrete Logarithm mechanism, instantiated over

Paillier groups [44] or ideal class groups [1], among others. The

construction is surprisingly simple. It brings bandwidth savings,

and its computational cost is on par with OLE from homomorphic

encryption. Though proposed in a semi-honest setting, it can be

upgraded to malicious security using proofs of knowledge.

However, a new tool realizing multiplication with one fewer

round does not make two-round threshold ECDSA immediately

possible. All prior schemes require a commitment to 𝑔𝑘𝑖 in the first

round, the equivocation of which allows the simulation to make 𝑅

hit a designated value. If we collapse the first two rounds of [30]

into one, removing the commitment, the resulting scheme is likely

insecure, because a rushing adversary would be able to bias the

distribution of 𝑅. Thus, provable security of the two-round design

on the horizon becomes the main challenge.

Presignature Re-randomization to the Rescue. A key insight in

[37] is that re-randomizing the presignature at signing time restores

security to the level of plain ECDSA. This approach is echoed in

recent two-round threshold Schnorr schemes [41, 6].

Another valuable lesson is that threshold ECDSA can be built

from different assumptions modeling single-party ECDSA with

different “modes of operation.” Several such assumptions [15, 37,

4] have been analyzed in the Generic Group Model (GGM). While

GGM is a strong idealized model, such idealization is known to

be required for ECDSA [38], and we can draw useful comparative

conclusions from these analyses.

Adjedj et al. [4] extend [37] by allowing an adversary to tweak

the nonce multiplicatively before it is properly re-randomized ad-

ditively. Their analysis shows only a constant-factor security loss

compared to plain ECDSA, which is still significantly better than

presigningwithout re-randomization [15]. Inspired by their idea, we

are finally able to construct a provably-secure two-round scheme.

Our Construction. We sketch our two-round signing protocol:

• Round 1: Each party 𝑖 samples random 𝑘𝑖 , 𝛾𝑖 , publishes 𝑔
𝑘𝑖
, and

inputs 𝑘𝑖 , 𝑥𝑖 , and 𝛾𝑖 into NIM. Each pair (𝑖, 𝑗) obtains additive
shares of 𝑘𝑖𝛾 𝑗 and 𝑥𝑖𝛾 𝑗 . After the interaction, each party holds

additive shares of 𝑘𝛾 and 𝑥𝛾 , where 𝑘 =
∑
𝑖 𝑘𝑖 and 𝛾 =

∑
𝑖 𝛾𝑖 . The

value 𝑔𝑘 is publicly known.

• Round 2: As the message to be signed is known, the nonce is

re-randomized from 𝑘 to 𝑧𝑘 + 𝑦, where 𝑧,𝑦 are hashes derived

from the transcript. Also, 𝑅 = 𝑔𝑧𝑘+𝑦 and 𝑟 = 𝑅 |𝑥-axis are known.
Each party 𝑖 sends 𝑚𝛾𝑖 + 𝑟 (𝑥𝛾)𝑖 and 𝑧 (𝑘𝛾)𝑖 + 𝑦𝛾𝑖 . Combining

them gives 𝛾 (𝑚 + 𝑟𝑥) and 𝛾 (𝑧𝑘 + 𝑦), then dividing yields 𝜎 =

(𝑧𝑘 + 𝑦)−1 (𝑚 + 𝑟𝑥).
Provided with the secrets of corrupted parties, which are ex-

tracted from their proofs of knowledge, the simulator can program

the random oracles producing the re-randomizers 𝑧 and 𝑦 in a suit-

able way, so that a reduction to the assumption analyzed in [4] is

possible, assuming the security of the building blocks.

Efficiency. Our scheme outperforms the state of the art in terms

of bandwidth efficiency (table 2). Each party communicates 1.9 KiB
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in the presigning phase and 64 bytes in the online phase, at the

128-bit security level. It only uses 4% as much communication as

the scheme of Doerner et al. [30], and 10% as much as the scheme of

Canetti et al. [15], in peer-to-peer networks. If parties are connected

via centralized servers, our advantage increases further, as each

party’s outbound communication is constant for ours but linear in

the number of signers for most other schemes in this setting.

We implement our scheme and compare it with some prior

schemes in computational cost. The one of Doerner et al. [30] is

very lightweight in computation, as it builds on OT extension and

for the most part only performs symmetric-cryptographic opera-

tions. However, even though our presigning is about 10x heavier in

computation than [30] and takes about 200 milliseconds CPU time

for 3 parties, our scheme enjoys a fast online phase taking less than

1 millisecond of computation. Since our protocol is about 4x faster

than [15], which has seen particular industrial interest, we regard

our proposed scheme to be competitive in practical performance.

As class groups find increasing use in cryptography, we expect that

our scheme will benefit from future optimizations in this area.

1.2 Related Work
We compare the basic features of existing practical threshold ECDSA

schemes in the threshold-optimal setting in table 1.

Table 1: Overview of threshold-optimal ECDSA schemes.

Scheme Main Tool Rounds Note

GG18 [34] Paillier 8 BC

LN18 [43]

Paillier / OT 8 original ver.

OT 5 updated ver.

DKLs19 [29] OT ⌈log 𝑡⌉ + 6 BC

CGGMP20 [15] Paillier 4 or 7 BC, IA

CCLST20 [16] CL 8 BC

CCLST23 [17] CL 7 BC, IA

WMYC23 [50] CL 7 BC, IA, robust

DKLs24 [30] OT 3

WMC24 [49] threshold CL 4 BC, IA, robust

CDKS24 [22] OT 7 BC, IA

This work class group NIM 2

IA = Identifiable Abort. BC = Requires broadcast channel during signing (if IA

is not required, the cheaper echo broadcast can be used instead). OT = Oblivious

Transfer. CL = Castagnos–Laguillaumie encryption. PCG = Pseudorandom Corre-

lated Generator. NIM = Non-Interactive Multiplication. Round count of LN18 is

based on the updated full version.

Gennaro and Goldfeder [34] and Lindell and Nof [43] proposed

the first practical threshold-optimal ECDSA schemes. Both con-

structions use two-party secure computation subprotocols, based

on Paillier encryption or Oblivious Transfer (OT), to convert a

product of shared secrets to additive shares.

Canetti et al. [15] extend [34] to support identifiable abort, i.e.,

identification of cheating parties in the case of signing abort, using

NIZK arguments. Their protocol takes four rounds, one of which is

a broadcast. In fact, broadcasts are necessary for identifiable abort

with a dishonest majority [23]. To avoid broadcast overhead, we

assume no broadcasts during signing, and our scheme does not

have identifiable abort.

Castagnos et al. [16] use the Castagnos–Laguillaumie (CL) en-

cryption scheme [19] from class groups in place of Pailler to achieve

lower bandwidth and avoid range proofs used in [34]. They later

extend it to support identifiable abort [17]. Wong et al. [50] uti-

lize Distributed Key Generation to generate Shamir secret-shared

nonces, so that faults do not always abort signing. Later, Wong et

al. [49] construct threshold ECDSA from threshold CL encryption

[14]. This revives the idea of Gennaro et al. [35] using threshold

Paillier, which is impractical due to a highly expensive setup [21].

The drawback of [49] is higher latency in the online phase.

Abram et al. [2] proposed a low-bandwidth construction using a

Pseudorandom Correlated Generator (PCG). Their signing protocol

consumes the least bandwidth among all schemes when amortized

over large batches, but only supports full threshold, i.e., 𝑡 = 𝑛.

Observing from [2] that the two multiplications in [43] can be

computed in parallel instead of sequentially to reduce presigning

rounds, Doerner et al. [30] proposed a three-round construction,

subsuming their earlier scheme taking more rounds [29]. Using

OT extension, their protocol is light on computation, but requires

higher bandwidth. Cohen et al. [22] extend it to a 7-round protocol

with identifiable abort.

Damgård et al. [26], Groth and Shoup [36], Katz and Urban

[40], and Kondi and Ravi [42] study threshold ECDSA in the honest-

majority setting. The scheme in [36] is the only onewithmitigations

to the attack surface analyzed in [37] among honest-majority and

threshold-optimal ones. The drawback of these honest-majority

schemes is that threshold signing requires at least twice as many

participants as are needed to simply reconstruct the secret key.

We refer the reader to [30] and the updated full version of [15]

for information on other works.

1.3 Paper Organization
The rest of this paper is organized as follows. In section 2, we first

recall ECDSA, then define the syntax and security of threshold

signature schemes. Next, we introduce the cryptographic building

blocks, namely, Non-Interactive Multiplication (NIM) and Non-

Interactive Zero-Knowledge Arguments of Knowledge (NIZKAoK).

Then, we outline the assumption on single-party ECDSA introduced

in [4]. In section 3, we describe our two-round threshold ECDSA

scheme using the building blocks and prove its security. In section 4,

we outline how we instantiate the building blocks based on class

groups. In section 5, we present performance metrics and analyze

the efficiency of our proposed scheme.

2 PRELIMINARIES
General Notation. Let 𝜅 and 𝜅st denote the computational and

statistical security parameters, respectively. Let negl(𝜅) denote
a negligible function. We use “:=” for deterministic assignment,

“←” for assignment from a randomized algorithm, and “←$” for

uniform random sampling. Groups are written in multiplicative

notation. The integer range [𝑚..𝑛] represents {𝑚,𝑚 + 1, . . . , 𝑛}, and
[𝑛] means [1..𝑛]. We use PPT to denote probabilistic polynomial

time.
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2.1 ECDSA
Let G denote the elliptic curve group generated by 𝑔 of prime

order 𝑞, and let Z𝑞 denote the field Z/𝑞Z of integers modulo 𝑞. Let

Hsig : {0, 1}∗ → Z𝑞 be a cryptographic hash function.

Definition 1 (ECDSA). The Elliptic Curve Digital Signature Algo-
rithm ECDSA = (Setup,KeyGen, Sign,Verify) is defined as follows:
• Setup(1𝜅 ) → pp: On input the security parameter, the setup algo-
rithm returns public parameters pp = ((G, 𝑞, 𝑔),Hsig), which will
be implicitly given as input to other algorithms.
• KeyGen(pp) → (𝑋, 𝑥): On input the public parameters, the key
generation algorithm samples a signing key 𝑥 ←$ Z𝑞 , computes
the verification key 𝑋 := 𝑔𝑥 , and returns the key pair (𝑋, 𝑥).
• Sign(𝑥,msg) → (𝑟, 𝜎): On input the signing key 𝑥 and themessage
msg, the signing algorithm computes𝑚 := Hsig (msg), samples a
nonce 𝑘 ←$ Z𝑞 , computes 𝑅 := 𝑔𝑘 , its 𝑥-coordinate 𝑟 := 𝑅 |𝑥-axis,
and 𝜎 := 𝑘−1 (𝑚 + 𝑟𝑥) mod 𝑞, and returns the signature (𝑟, 𝜎).
• Verify(𝑋,msg, (𝑟, 𝜎)) → {0, 1}: On input the verification key 𝑋 ,
the message msg, and the signature (𝑟, 𝜎), the verification algo-
rithm computes𝑚 := Hsig (msg), computes 𝑅 := (𝑔𝑚𝑋𝑟 )1/𝜎 , and
returns 1 if 𝑅 |𝑥-axis = 𝑟 and 0 otherwise.

2.2 Defining Threshold Signatures
We define the syntax of threshold signature schemes following [24].

Definition 2 (Two-Round Threshold Signatures). A two-
round threshold signature scheme TS = (Setup,KeyGen, Presign, Sign,
Combine,Verify) has the following syntax:
• Setup(1𝜅 ) → pp: On input the security parameter, the setup algo-
rithm returns public parameters pp, which will be implicitly given
as input to other algorithms.
• KeyGen(𝑡, 𝑛) → (pk, {(pk𝑖 , sk𝑖 )}𝑖∈[𝑛] ): On input the threshold
𝑡 and the number of parties 𝑛, the probabilistic key generation
algorithm outputs a verification key pk that represents the entirety
of the 𝑛 parties, the set {pk𝑖 }𝑖∈[𝑛] of public keys for each party,
and the set {sk𝑖 }𝑖∈[𝑛] of secret keys for each party. Each sk𝑖 is
privately held by party 𝑖 , and (pk, {pk𝑖 }𝑖∈[𝑛] ) is made public.
• (Presign, Sign,Combine): These three algorithms make up the
signing protocol. Let P ⊆ [𝑛] be a quorum of 𝑡 or more parties. For
each signing session, each party indexed by 𝑖 ∈ P runs the following
two algorithms:
– Presign(𝑖) → (pm(1)

𝑖
, pst𝑖 ): The presigning algorithm returns

the party’s round-1 protocol message pm(1)
𝑖

and presigning secret
state pst𝑖 .

– Sign(𝑖,msg, {pm(1)
𝑗
} 𝑗∈P, pst𝑖 ) → pm(2)

𝑖
: On input the message

msg to be signed, the round-1 protocol messages {pm(1)
𝑗
} 𝑗∈P

from parties in the quorum, and the party’s presigning secret
state pst𝑖 , the signing algorithm returns the party’s round-2
protocol message pm(2)

𝑖
.

Then, any entity can run the following algorithm:
– Combine(pk,msg, {(pm(1)

𝑗
, pm(2)

𝑗
)} 𝑗∈P) → sig: On input the

verification key pk, the message msg to be signed, and the pro-
tocol messages {(pm(1)

𝑗
, pm(2)

𝑗
)} 𝑗∈P of parties in the quorum

in both rounds, the deterministic combining algorithm returns a
signature sig.

• Verify(pk,msg, sig) → {0, 1}: On input the verification key pk,
the message msg, and the signature sig, the verification algorithm
returns 1 if the signature is valid for the message msg and the
verification key pk, and 0 otherwise.

Correctness can be intuitively defined: for all pp← Setup(1𝜅 )
and 𝑡 ≤ 𝑛, after TS.KeyGen is run, for every quorum P ⊆ [𝑛], |P| ≥
𝑡 and every message msg, if each party indexed by 𝑖 ∈ P honestly

participates in the two rounds of signing and the protocol messages

are delivered properly, then the signature output by TS.Combine
always passes verification.

Definition 3 (Static Unforgeability). Let TS be a two-round
threshold signature scheme. For a PPT adversary A, we consider the
following experiment ExpTSUFA :

(1) Initialization Phase. Let pp← TS.Setup(1𝜅 ). Initialize two lists
𝑄state, 𝑄sign as empty. On input the number of signers 𝑛, the
threshold 𝑡 , and the corruption set C from A, check if 𝑡 ≤ 𝑛,
C ⊊ [𝑛], and |C| < 𝑡 . If so, run (pk, {(pk𝑖 , sk𝑖 )}𝑖∈[𝑛] ) ←
TS.KeyGen(𝑡, 𝑛), and define the honest set H := [𝑛] \ C; else,
return ⊥.

(2) Signing Phase. The adversary A has full control over any cor-
rupted party indexed by 𝑖 ∈ C. It knows the secret keys {sk𝑖 }𝑖∈C
of corrupted parties. Furthermore, it can query the following two
oracles to engage honest parties in the signing protocol:
• Oracle Presign: On input (𝑖, sid) from A, where 𝑖 is a party
index and sid is a session identifier, check if 𝑖 ∈ H and
no item (𝑖, sid, ·) exists in 𝑄state. If so, let (pm(1)𝑖

, pst𝑖 ) ←
TS.Presign(𝑖), return the protocol message pm(1)

𝑖
to A, and

append the secret state (𝑖, sid, pst𝑖 ) to 𝑄state. Else, return ⊥.
• Oracle Sign: On input (𝑖, sid, P,msg, {pm(1)

𝑗
} 𝑗∈P) from A,

check if 𝑖 ∈ H, there exists an item (𝑖, sid, pst𝑖 ) in 𝑄state, and
either (sid,msg) ∈ 𝑄sign or no item (sid, ·) exists in 𝑄sign.

If so, return the party’s round-2 protocol message pm(2)
𝑖
←

TS.Sign(𝑖,msg, {pm(1)
𝑗
} 𝑗∈P, pst𝑖 ) toA, and append (sid,msg)

to 𝑄sign if it does not already exist. Else, return ⊥.
(3) Outcome: If A outputs (msg, sig) such that no item (·,msg)

exists in 𝑄sign and TS.Verify(pk,msg, sig) = 1, then the experi-
ment returns 1. Otherwise, it returns 0.

We say TS satisfies existential unforgeability under chosen message
attack with static corruption (or, static unforgeability) if, for any PPT
adversary A, the probability that the experiment ExpTSUFA returns 1

is negligible in 𝜅.

In the unforgeability game above, we do not make any assump-

tions about the underlying network. The network can be thought

of as fully controlled by the adversary, who relays protocol mes-

sages with arbitrary timing and order. Note that we do not assume

broadcasts; if an adversary sends inconsistent protocol messages

to different parties, a valid signature will not be produced, and the

session will abort but with no further consequences. The adver-

sary can also initiate concurrent signing sessions. If the adversary

outputs a valid forgery for a unsigned message, then it wins the ex-

periment. By ‘unsigned’ we mean the message has not been queried

to any honest party; this corresponds to TS-UF-0 in the hierarchy

of definitions in [6].
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2.3 Non-Interactive Multiplication
We define the syntax of Non-Interactive Multiplication following

Boyle et al. [12], with minor adjustments. Concrete instantiations

of this primitive can be found in [3]. We provide details on a class-

group instantiation in section 4.

Definition 4 (Non-Interactive Multiplication). Let Z𝑞 be
the field of integers modulo 𝑞. A Non-Interactive Multiplication (NIM)
schemeNIM = (Setup, (Encode𝜌 ,Decode𝜌 )𝜌∈{𝐴,𝐵} ) has the follow-
ing syntax:
• Setup(1𝜅 , 𝑞) → crs: On input the security parameter and the prime
𝑞, the setup algorithm returns a Common Reference String crs.
• Encode𝜌 (crs, 𝑣) → (pe𝜌 , st𝜌 ): On input crs and 𝑣 ∈ Z𝑞 , the encod-
ing algorithm, randomized and parameterized by a role 𝜌 ∈ {𝐴, 𝐵},
outputs a public encoding pe𝜌 and a secret state st𝜌 .
• Decode𝜌 (crs, pe𝜌 , st𝜌 ) → 𝑧𝜌 : On input crs, a public encoding pe𝜌
from a different role,1 and a secret state st𝜌 , the decoding algorithm,
deterministic and parameterized by a role 𝜌 ∈ {𝐴, 𝐵}, outputs a
share 𝑧𝜌 ∈ Z𝑞 .

We require the following properties to hold:
Correctness: The scheme is correct if, for all 𝑥,𝑦 ∈ Z𝑞 ,

Pr


𝑧𝐴 + 𝑧𝐵 = 𝑥𝑦

����������
crs← Setup(1𝜅 )

(pe𝐴, st𝐴) ← Encode𝐴 (crs, 𝑥)
(pe𝐵, st𝐵) ← Encode𝐵 (crs, 𝑦)
𝑧𝐴 := Decode(crs, pe𝐵, st𝐴)
𝑧𝐵 := Decode(crs, pe𝐴, st𝐵)


≥ 1−negl(𝜅) .

Input Privacy: The scheme is input-private if, for all PPT adversary
A and role 𝜌 ∈ {𝐴, 𝐵}, the public encoding hides the message:

Pr


𝑏∗ = 𝑏

����������
crs← Setup(1𝜅 )

(𝑣0, 𝑣1, st) ← A(crs)
𝑏 ←$ {0, 1}

(pe𝜌 , st𝜌 ) ← Encode𝜌 (crs, 𝑣𝑏 )
𝑏∗ ← A(st, pe𝜌 )


≤ 1

2

+ negl(𝜅) .

2.4 NIZK Arguments of Knowledge
We define Non-Interactive Zero-Knowledge Arguments of Knowl-

edge in the random oracle model.

Definition 5 (Non-Interactive Zero-KnowledgeArguments

of Knowledge). Let L be an NP language with associated relation
RL . Let H be a random oracle. A Non-Interactive Zero-Knowledge Ar-
gument of Knowledge scheme NIZKAoK = (Setup, ProveH,VerifyH)
has the following syntax:
• Setup(1𝜅 ) → pp: On input the security parameter, the setup algo-
rithm returns public parameters pp, which will be implicitly given
as input to other algorithms.
• ProveH (stmt,wit) → 𝜋 : On input a statement stmt and a witness
wit such that (stmt,wit) ∈ RL , the prover outputs a proof 𝜋 .
• VerifyH (stmt, 𝜋) → {0, 1}: On input a statement stmt and proof
𝜋 , the verifier outputs 1 for accept or 0 for reject.

We require the following properties to hold:
Completeness: The scheme is complete if, for all (stmt,wit) ∈ RL ,

Pr

[
VerifyH (stmt, 𝜋) = 1

��� 𝜋 ← ProveH (stmt,wit)
]
≥ 1 − negl(𝜅).

1
The notation 𝜌 denotes the role that is not 𝜌 ; i.e.,𝐴 = 𝐵 and �̄� = 𝐴.

Zero Knowledge: The scheme is zero-knowledge if, for all PPT A,
there exists a simulator SimH such that for all (stmt,wit) ∈ RL ,��
Pr

[
AH (stmt, 𝜋) = 1

��� 𝜋 ← ProveH (stmt,wit)
]

− Pr

[
AH (stmt, 𝜋) = 1

��� 𝜋 ← SimH (stmt)
] �� ≤ negl(𝜅) .

Knowledge Extractability: The scheme is knowledge-extractable
if, for all PPT A, there exists an extractor ExtractA such that

Pr

[
VerifyH (stmt, 𝜋∗) = 1

∧ (stmt,wit∗) ∉ RL

���� (stmt, 𝜋∗) ← AH (pp)
wit∗ ← ExtractA (stmt, 𝜋∗)

]
≤ negl(𝜅).

2.5 Doubly-Enhanced Existential Unforgeability
of ECDSA

Below, we recall the computational assumption on the Doubly-

Enhanced Existential Unforgeability of single-party ECDSA from

Adjedj et al. [4].

Definition 6 (Doubly-Enhanced Existential Unforgeabil-

ity of ECDSA [4]). For a PPT adversaryA, we consider the following
experiment ExpDEUFA :

(1) Initialization Phase. The challenger runs pp← ECDSA.Setup(1𝜅 )
and (𝑋, 𝑥) ← ECDSA.KeyGen(pp), sends the verification key 𝑋
to A, and initializes three query sets 𝑄presign, 𝑄tweak, and 𝑄sign
as empty.

(2) Signing Phase. The challenger answers A’s queries to the three
oracles as follows:
• Oracle Presign: Sample a nonce 𝑘 ←$ Z𝑞 and return 𝑅 := 𝑔𝑘 .
Append (𝑅, 𝑘) to 𝑄presign.
• Oracle Tweak: On input (𝑅, 𝑧,𝑚) fromA, check if there is an
item (𝑅, 𝑘) ∈ 𝑄presign but no (𝑅, 𝑧,𝑚, ·) ∈ 𝑄tweak. If so, return
𝜇 ←$ Z𝑞 , and append (𝑅, 𝑧,𝑚, 𝜇) to 𝑄tweak. Else, return ⊥.
• Oracle Sign: On input (𝑅, 𝑧,𝑚, 𝜇) from A, check if there is an
item (𝑅, 𝑘) ∈ 𝑄presign and (𝑅, 𝑧,𝑚, 𝜇) ∈ 𝑄tweak. If so, compute
𝑟 := 𝑔𝑧𝑘+𝜇 |𝑥-axis, return 𝜎 := (𝑧𝑘 + 𝜇)−1 (𝑚 + 𝑟𝑥), append𝑚
to 𝑄sign, and delete (𝑅, 𝑘) from 𝑄presign. Else, return ⊥.

(3) Outcome. IfA outputs (msg, (𝑟, 𝜎)) such thatHsig (msg) ∉ 𝑄sign
and ECDSA.Verify(𝑋,msg, (𝑟, 𝜎)) = 1, then the experiment re-
turns 1. Otherwise, it returns 0.

We say that the Doubly-Enhanced Existential Unforgeability of
ECDSA holds if, for any PPT adversary A, the probability that the
experiment ExpDEUFA returns 1 is negligible in 𝜅.

The experiment defined in the assumption above is a variant of

the standard EUF-CMA game, with some features related to pre-

signing. In the experiment ExpDEUFA , for each presignature 𝑅 = 𝑔𝑘

provided by the challenger, the adversary can tweak it with a mul-

tiplicative factor 𝑧 of its choice. For each tuple (𝑅, 𝑧,𝑚) queried,
where 𝑚 is a message hash, the challenger returns a modifier 𝜇

chosen uniformly at random. Before the adversary decides which

(𝑅, 𝑧,𝑚) to actually use for signing, it can query the Tweak ora-

cle arbitrarily many times. For the signature queried at last, the

challenger uses 𝑧𝑘 + 𝜇 as the nonce.
The experiment ExpDEUFA is an extension of the security exper-

iment of ECDSA with re-randomized presignatures analyzed by

Groth and Shoup [37, section 8], which is shown in the generic

group model (GGM) [47] to be as secure as plain ECDSA without

5
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presigning. In the latter, the adversary is not allowed to tweak the

presignature, or equivalently, 𝑧 always equals 1; neither can A
query modifiers with different message hashes for a single presig-

nature. The added flexibility in ExpDEUFA allows us to use random

oracles to derive re-randomizers in the protocol design. According

to the analysis in the GGM by Adjedj et al. [4, theorem 2.1], this

only incurs a constant security loss of 2
−5
.

Despite what the terms suggest, the Doubly-Enhanced existential

unforgeability is a weaker assumption than the Enhanced existen-

tial unforgeability [15, appendix E] underlying existing threshold

ECDSA schemes with presigning. The latter assumes extra features

on the hash function Hsig and has worse security. In that security

experiment, the presignature is never re-randomized. For further

information, we refer the reader to [37].

3 TWO-ROUND THRESHOLD ECDSA
In this section, we first describe our proposed two-round threshold

ECDSA scheme, and then prove it secure assuming the security

properties of the building blocks in the random oracle model.

3.1 Construction
We begin with a high-level explanation. First, the public parameters

for ECDSA and the CRS for NIM are set up, and two hash functions

to be used to re-randomize the presignature are given in the setup

phase. Then, KeyGen generates the Shamir secret-shared signing

key and the corresponding public verification key. In practice this

is done via a Distributed Key Generation (DKG) subprotocol, but to

simplify presentation, we use a trusted dealer here. Additionally,

each party publishes a NIM public encoding (under role 𝐵) of each

secret-key share, with a NIZKAoK attesting that it is well-formed.

Each signing session consists of a presigning round and a signing

round. In the presigning round, each party 𝑖 sends to other parties a

public encoding of a random 𝛾𝑖 under role𝐴, a public encoding of a

random 𝑘𝑖 under role 𝐵, and 𝑔
𝑘𝑖
; in addition, each party computes a

NIZKAoK to prove the message is well-formed. After receiving each

other’s message, the parties can use NIM decoding to obtain additive

shares of products 𝑘𝛾 and 𝑥𝛾 , where 𝑘 =
∑
𝑖 𝑘𝑖 and 𝛾 =

∑
𝑖 𝛾𝑖 . While

this is done in the presigning phase, we put these steps in the Sign
procedure to fit the defined syntax.

After the messagemsg to be signed is known, two hashes 𝑧,𝑦 are
publicly derived from the message and the transcript of interaction.

The presignature is re-randomized from 𝑔𝑘 to 𝑅 = (𝑔𝑘 )𝑧𝑔𝑦 . Each
party 𝑖 submits its shares of 𝑤 = 𝑚𝛾 + 𝑟𝑥𝛾 and 𝑢 = 𝑦𝛾 + 𝑧𝑘𝛾 to

finalize signing, where 𝑟 = 𝑅 |𝑥-axis and𝑚 = Hsig (msg).
In line with other works on threshld ECDSA, we assume authen-

ticated communication. This can be realized by having each party

sign each protocol message, binding it to a session identifier. Thus,

the protocol implicitly requires a separate Public Key Infrastructure

(PKI) and an external mechanism to produce session identifiers.

They can be implemented using readily available resources, and we

do not explicitly specify them here.

Threshold ECDSA Protocol

Setup: On input the security parameter 1
𝜅
, the setup al-

gorithm does:

(1) Run ((G, 𝑞, 𝑔),Hsig) ← ECDSA.Setup(1𝜅 );
(2) Choose two hash functions H1,H2 : {0, 1}∗ → Z𝑞 ;
(3) Run crs← NIM.Setup(1𝜅 );
(4) Return pp := ((G, 𝑞, 𝑔),Hsig,H1,H2, crs).

KeyGen: On input the threshold 𝑡 and number of parties

𝑛, the key generation subprotocol first does:

(1) Sample a random polynomial of degree 𝑡 − 1 over

Z𝑞 : 𝑓 (𝑍 ) = 𝑎0 + 𝑎1𝑍 + · · · + 𝑎𝑡−1𝑍
𝑡−1

;

(2) Set 𝑋 := 𝑔𝑎0
as the verification key;

(3) For each party indexed by 𝑖 ∈ [𝑛], set 𝑥𝑖 := 𝑓 (𝑖)
as its secret-key share, and set 𝑋𝑖 := 𝑔𝑥𝑖 as the

corresponding public-key share;

(4) Send each 𝑥𝑖 to party 𝑖 privately, and make

(𝑋, {𝑋𝑖 }𝑖∈[𝑛] ) public.
Then, each party 𝑖 does the following:

(1) Compute (pe𝑥,𝑖 , st𝑥,𝑖 ) ← NIM.Encode𝐵 (crs, 𝑥𝑖 );
(2) Compute 𝜋𝑥,𝑖 , a NIZKAoK that pe𝑥,𝑖 and 𝑋𝑖 use a

consistent 𝑥𝑖 ;

(3) Broadcast (pe𝑥,𝑖 , 𝜋𝑥,𝑖 ), and store st𝑥,𝑖 ;
(4) Abort if any other party broadcasts a NIZKAoK

that fails verification.

Finally, the key generation subprotocol outputs the veri-

fication key pk := 𝑋 , the parties’ public keys {pk𝑖 }𝑖∈[𝑛]
where pk𝑖 := (𝑋𝑖 , pe𝑥,𝑖 ), and the parties’ secret keys

{sk𝑖 }𝑖∈[𝑛] where sk𝑖 := (𝑥𝑖 , st𝑥,𝑖 ).
Presign: On receiving a presignature request, each party

𝑖 does:

(1) Sample 𝑘𝑖 , 𝛾𝑖 ←$ Z𝑞 ;
(2) Compute:

• 𝐾𝑖 := 𝑔𝑘𝑖 ,

• Γ𝑖 := 𝑔𝛾𝑖 ,

• (pe𝑘,𝑖 , st𝑘,𝑖 ) ← NIM.Encode𝐵 (crs, 𝑘𝑖 ),
• (pe𝛾,𝑖 , st𝛾,𝑖 ) ← NIM.Encode𝐴 (crs, 𝛾𝑖 );

(3) Compute 𝜋𝑖 , a NIZKAoK proving that pe𝑘,𝑖 and
𝐾𝑖 use a consistent 𝑘𝑖 and that pe𝛾,𝑖 and Γ𝑖 use a
consistent 𝛾𝑖 .

The presigning algorithm outputs the round-1 protocol

message pm(1)
𝑖

:= (𝐾𝑖 , Γ𝑖 , pe𝑘,𝑖 , pe𝛾,𝑖 , 𝜋𝑖 ) and the secret
state pst𝑖 := (𝑘𝑖 , 𝛾𝑖 , st𝑘,𝑖 , st𝛾,𝑖 ) of party 𝑖 . It is assumed

that each party 𝑖 stores its secret state pst𝑖 securely

and sends the protocol message pm(1)
𝑖

to other parties

authenticated and bound to a session identifier.

Sign: On receiving the presigning protocol messages

{pm(1)
𝑗
} 𝑗∈P from parties in the quorum P where P ⊆

[𝑛], |P| ≥ 𝑡 and a signing request for the message msg,
each party indexed by 𝑖 ∈ P does:

(1) Set 𝐾 :=
∏

𝑖∈P 𝐾𝑖 ;
(2) For each 𝑗 ∈ P\{𝑖}:
• Parse pm(1)

𝑗
as (𝐾𝑗 , Γ𝑗 , pe𝑘,𝑗 , pe𝛾,𝑗 , 𝜋 𝑗 );

• Abort if the NIZKAoK 𝜋 𝑗 fails verification;

• Compute:

– 𝛼𝑖, 𝑗 := NIM.Decode𝐵 (crs, pe𝛾,𝑗 , st𝑘,𝑖 ),
– 𝛽 𝑗,𝑖 := NIM.Decode𝐴 (crs, pe𝑘,𝑗 , st𝛾,𝑖 ),
– 𝜇𝑖, 𝑗 := 𝜆𝑖,P · NIM.Decode𝐵 (crs, pe𝛾,𝑗 , st𝑥,𝑖 ),

6
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– 𝜈 𝑗,𝑖 := 𝜆 𝑗,P · NIM.Decode𝐴 (crs, pe𝑥,𝑗 , st𝛾,𝑖 ).
Here, 𝜆𝑖,P :=

∏
𝑗∈P\{𝑖 } 𝑗 · ( 𝑗−𝑖)−1

mod 𝑞 is the 𝑖-th

Lagrange coefficient w.r.t. the quorum. The steps

above can be performed before msg is known.
(3) Compute:

• 𝑚 := Hsig (msg),
• 𝑧 := H1 (𝑋,msg, {pm(1)

𝑖
}𝑖∈P),

• 𝑦 := H2 (𝑧);
(4) Set 𝑅 := 𝐾𝑧𝑔𝑦 , and 𝑟 := 𝑅 |𝑥-axis;
(5) Set𝑤𝑖 :=𝑚𝛾𝑖 + 𝑟 (𝜆𝑖,P𝑥𝑖𝛾𝑖 +

∑
𝑗∈P\{𝑖 } (𝜇𝑖, 𝑗 + 𝜈 𝑗,𝑖 ));

(6) Set 𝑢𝑖 := 𝑦𝛾𝑖 + 𝑧 (𝑘𝑖𝛾𝑖 +
∑

𝑗∈P\{𝑖 } (𝛼𝑖, 𝑗 + 𝛽 𝑗,𝑖 )).
The signing algorithm outputs the round-2 protocol

message pm(2)
𝑖

:= (𝑤𝑖 , 𝑢𝑖 ) of party 𝑖 . It is assumed that

the presigning secret state pst𝑖 is used only once and

is erased after use.

Combine: On receiving {(pm(1)
𝑖
, pm(2)

𝑖
)}𝑖∈P, the combin-

ing algorithm computes 𝑟 as specified above, and sets

𝑤 :=
∑
𝑖∈P𝑤𝑖 and 𝑢 :=

∑
𝑖∈P 𝑢𝑖 . It then computes

𝜎 := 𝑤 · 𝑢−1
mod 𝑞. It outputs the signature (𝑟, 𝜎) if

ECDSA.Verify(𝑋,msg, (𝑟, 𝜎)) = 1, and ⊥ otherwise.

Correctness. We briefly outline the correctness of the protocol.

By the correctness of NIM, for each pair of signers 𝑖, 𝑗 ∈ P, 𝑖 ≠

𝑗 , we have 𝛼𝑖, 𝑗 + 𝛽𝑖, 𝑗 = 𝑘𝑖𝛾 𝑗 , and 𝜇𝑖, 𝑗 + 𝜈𝑖, 𝑗 = (𝜆𝑖,P𝑥𝑖 )𝛾 𝑗 . Define
𝑘 :=

∑
𝑖∈P 𝑘𝑖 , 𝛾 :=

∑
𝑖∈P 𝛾𝑖 , and 𝑥 :=

∑
𝑖∈P 𝜆𝑖,P𝑥𝑖 . Rearranging the

combining step, we have 𝑤 = 𝛾 · (𝑚 + 𝑟𝑥) and 𝑢 = 𝛾 · (𝑧𝑘 + 𝑦).
Note that 𝑅 = 𝑔𝑧𝑘+𝑦 and 𝑟 = 𝑅 |𝑥-axis. Therefore, we have 𝜎 =

𝑤/𝑢 = (𝑧𝑘 + 𝑦)−1 (𝑚 + 𝑟𝑥), and we can conclude that (𝑟, 𝜎) is a
valid signature on msg under verification key 𝑋 .

3.2 Security Analysis
Below, we prove that our two-round threshold ECDSA scheme

satisfies existential unforgeability under chosen message attack

with static corruption (definition 3) using the building blocks in the

random oracle model. The theorem is as follows:

Theorem 1. Assuming the Doubly-Enhanced Unforgeability of
ECDSA and the security of NIM and NIZKAoK schemes, with hash
functions H1, H2 modeled as random oracles, the above threshold
ECDSA protocol satisfies static unforgeability.

Proof. Suppose there exists a PPT adversary A that wins the

static unforgeability experiment ExpTSUFA w.r.t. our threshold ECDSA

protocol with non-negligible probability. We show that, under the

given conditions, there exists a PPT algorithm B that can win

the experiment of Doubly-Enhanced Unforgeability of ECDSA

ExpDEUFB with non-negligible probability. Below, we describe how

the reduction B proceeds.

Initialization. The reductionB initializes the experiment ExpDEUFB ,

and receives the public parameters pp from the challenger. It then

sets up the public parameters for the threshold ECDSA protocol

using what’s received. Moreover, B will act as random oracles for

hash queries to H1 and H2.

The reduction B receives the verification key 𝑋 from ExpDEUFB .

To win the experiment, it will have to forge a signature on an

unsigned message under 𝑋 . Towards this goal, B first embeds the

verification key 𝑋 as the one output by KeyGen. This can be done

in a way that is standard in threshold cryptography. Since B does

not know the discrete logarithm of 𝑋 , it gives each corrupted party

𝑗 ∈ C a secret-key share 𝑥𝑖 ←$ Z𝑞 that is random. Their public

shares {𝑋 𝑗 } 𝑗∈C are each computed as 𝑋 𝑗 = 𝑔
𝑥 𝑗
. Then, B simulates

consistent public shares {𝑋𝑖 }𝑖∈H for the honest parties without

knowing the corresponding discrete logarithms, using Lagrange

interpolation in the exponent.

We remark that the simulation of KeyGen is also possible when

a DKG subprotocol is used, on condition that it is simulatable given

𝑋 . In such a case, the reduction B extracts the secret-key shares

{𝑥 𝑗 } 𝑗∈C of corrupted parties using the NIZKAoKs {𝜋𝑥,𝑗 } 𝑗∈C.
The reduction B then proceeds to simulate the presigning and

signing interactions with A. It plays the roles of the honest parties

𝑖 ∈ H and answers the queries to oracles Presign and Sign made

by the adversaryA. It manages query sets as described in ExpTSUFA ,

and additionally initializes another one 𝑄presign as empty.

Simulating Presigning. On receiving A’s query (𝑖, sid) to oracle

Presign, if the query is invalid, i.e., it does not pass the checks in

ExpTSUFA , then the simulated oracle Presign returns ⊥. Otherwise,
the query for a presigning protocol message is valid, andB proceeds

as follows.

First, B checks if no item (sid, ·) exists in 𝑄presign, i.e., sid is

queried for the first time. If so,B queries oracle Presign in ExpDEUFB and

receives a presignature𝑅, and appends (sid, 𝑅) to𝑄presign. If (sid, 𝑅)
already exists, B fetches 𝑅 previously recorded.

In either case, B samples a random 𝑐𝑖 ←$ Z𝑞 , and sets 𝐾𝑖 :=

𝑅𝑐𝑖 . It then chooses 𝛾𝑖 randomly from Z𝑞 and proceeds honestly

in computing Γ𝑖 and pe𝛾,𝑖 . Since B does not know the discrete

logarithm of 𝐾𝑖 , it samples a random 𝑘𝑖 ←$ Z𝑞 , computes the

NIM encoding pe𝑘,𝑖 with input 𝑘𝑖 , and simulates the NIZKAoK 𝜋𝑖
using the zero-knowledge simulator. Finally, B outputs party 𝑖’s

presigning protocol message pm(1)
𝑖

:= (𝐾𝑖 , Γ𝑖 , pe𝑘,𝑖 , pe𝛾,𝑖 , 𝜋𝑖 ) to A.

Simulating Hash Queries. The reduction B simulates queries to

H1 using standard lazy sampling. It maintains a list of queries and

responses, and samples a random 𝑧 ←$ Z𝑞 if the query is new. If the

query is repeated, B returns the same response as before. However,

when A queries H1 on a new input (𝑋,msg, {pm(1)
𝑗
} 𝑗∈P), before

returning 𝑧 ←$ Z𝑞 to A, the reduction B programs H2 on input

𝑧 in a special way. Namely, for each corrupted signer 𝑗 ∈ P ∩ C,
the reduction B parses pm(1)

𝑗
as (𝐾𝑗 , Γ𝑗 , pe𝑘,𝑗 , pe𝛾,𝑗 , 𝜋 𝑗 ), and if all

NIZKAoKs {𝜋 𝑗 } 𝑗∈P∩C pass verification, B does the following:

• Extract {(𝑘 𝑗 , 𝛾 𝑗 )} 𝑗∈P∩C using the NIZKAoK extractor;

• Query oracle Tweak in ExpDEUFB with input (𝑅, 𝑧′,𝑚), where
𝑧′ := 𝑧 ·∑𝑗∈P∩H 𝑐 𝑗 and𝑚 := Hsig (msg), receiving 𝜇 in return;

• Program H2 to return 𝑦 := 𝜇 − 𝑧 ·∑𝑗∈P∩C 𝑘 𝑗 on input 𝑧.

If any NIZKAoK fails verification, then B programs H2 to return a

random 𝑦 ←$ Z𝑞 on input 𝑧. If a new query to H2 on a previously

unknown input is made, thenB also samples a random𝑦 ←$ Z𝑞 and

returns it. We provide some intuition here. Denote 𝐾 =
∏

𝑖∈P 𝐾𝑖
as prescribed. In the online phase corresponding to the queried

7
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transcript, the presignature will be re-randomized from 𝐾 to

𝐾𝑧𝑔𝑦 =

(∏
𝑖∈P

𝐾𝑖

)𝑧
𝑔𝑦 =

©­«
∏

𝑖∈P∩H
𝑅𝑐𝑖 ·

∏
𝑗∈P∩C

𝑔𝑘 𝑗 ª®¬
𝑧

·𝑔𝜇−𝑧 ·
∑

𝑗 ∈P∩C 𝑘 𝑗 = 𝑅𝑧
′
𝑔𝜇

Since 𝑅 is given by the ExpDEUFB challenger, 𝑧′ is the tweak induced

byB, and 𝜇 is the re-randomizer induced by the ExpDEUFB challenger,

this embeds a presignature, which the ExpDEUFB challenger can use

for single-party signing, into a simulated possibly-correct threshold

signing session.

Simulating Signing. On receiving A’s query to oracle Sign with

input (𝑖, sid, P,msg, {pm(1)
𝑗
} 𝑗∈P), if the query fails any check de-

fined in ExpTSUFA , or if any NIZKAoK from a corrupted signer

𝑗 ∈ P ∩ C fails verification, then the simulated oracle Sign returns

⊥. Otherwise, the query for an online signing protocol message is

valid, and B proceeds as follows.

First, B queries H1 (𝑋,msg, {pm(1)
𝑗
} 𝑗∈P), so that𝑚, 𝑧, 𝑧′, 𝜇,𝑦 are

well-defined and {(𝑘 𝑗 , 𝛾 𝑗 )} 𝑗∈P∩C are extracted, if not already.

If (sid,msg) is new and does not already exist in 𝑄sign, then B
does the following (note that this will define

ˆ𝑘𝑖 , 𝑥𝑖 for every honest

party 𝑖 ∈ P ∩ H under the same sid):

• Query oracle Sign in ExpDEUFB with input (𝑅, 𝑧′,𝑚, 𝜇) and obtain

𝜎 , which is the right part of a valid signature on msg under 𝑋 .
• Sample 𝑢′ ←$ Z𝑞 and set𝑤 ′ := 𝜎 · 𝑢′.
• Define 𝛾 :=

∑
𝑗∈P 𝛾 𝑗 ; this is feasible as {𝛾 𝑗 } 𝑗∈P∩H are known by

B and {𝛾 𝑗 } 𝑗∈P∩C are extracted.

• Define 𝑘′ := 𝑢′ (𝑧𝛾)−1 − 𝑦𝑧−1
such that 𝛾 · (𝑧𝑘′ + 𝑦) = 𝑢′.

• Sample
ˆ𝑘 𝑗 at random for each honest signer 𝑗 ∈ P ∩ H such that∑

𝑗∈P∩H ˆ𝑘 𝑗 +
∑

𝑗∈P∩C 𝑘 𝑗 = 𝑘
′
; this is feasible as {𝑘 𝑗 } 𝑗∈P∩C are

extracted.

• Define 𝑥 ′ := 𝑤 ′ (𝑟𝛾)−1 −𝑚𝑟−1
such that 𝛾 · (𝑚 + 𝑟𝑥 ′) = 𝑤 ′.

• Sample 𝑥 𝑗 at random for each honest signer 𝑗 ∈ P ∩ H such that∑
𝑗∈P∩H 𝑥 𝑗 +

∑
𝑗∈P∩C 𝜆 𝑗,P𝑥 𝑗 = 𝑥

′
; this is feasible as {𝑥 𝑗 } 𝑗∈P∩C

are known or extracted.

Then, B does the calculations in steps (1) to (4) of the online-

phase protocol on behalf of party 𝑖 , obtaining 𝛼𝑖, 𝑗 , 𝛽 𝑗,𝑖 , 𝜇𝑖, 𝑗 , 𝜈 𝑗,𝑖 and

𝑟 . The simulated oracle Sign output to A is (�̂�𝑖 , 𝑢𝑖 ), where
�̂�𝑖 :=𝑚𝛾𝑖 + 𝑟 (𝑥𝑖𝛾𝑖 +

∑
𝑗∈P\{𝑖 } (𝜇𝑖, 𝑗 + 𝜈 𝑗,𝑖 − 𝜆𝑖,P𝑥𝑖𝛾 𝑗 + 𝑥𝑖𝛾 𝑗 )),

𝑢𝑖 := 𝑦𝛾𝑖 + 𝑧 ( ˆ𝑘𝑖𝛾𝑖 +
∑

𝑗∈P\{𝑖 } (𝛼𝑖, 𝑗 + 𝛽 𝑗,𝑖 − 𝑘𝑖𝛾 𝑗 + ˆ𝑘𝑖𝛾 𝑗 )) .
This embeds 𝜎 , the right part of a valid signature, into a simulated

possibly-correct signing session.

Winning the Experiment. If A wins the simulated experiment,

then by definition, it outputs a valid forgery sig∗ = (𝑟∗, 𝜎∗) on a

message msg∗ that has not been queried to oracle Sign in ExpTSUFA .

Then, B can forward (msg∗, sig∗) to the challenger of ExpDEUFB and

win it, thus completing the reduction.

Analysis of Reduction. To complete the proof, we must argue that

the reduction B only fails with negligible probability, and that the

simulation is indistinguishable from the real threshold signature

static unforgeability experiment ExpTSUFA from the view of A.

Claim 1. The reduction B only fails with negligible probability.

We consider the following bad events that will force B to abort.

• Hash collisions. If any hash query results in a collision, B aborts.

By the birthday bound, this happens with negligible probability

for a polynomial number of queries.

• NIZKAoK extraction failure. If the NIZKAoK extraction fails, B
aborts. As we assume knowledge extractability of NIZKAoKs,

this happens with negligible probability.

• H2 programming conflicts. The reduction B aborts if it fails to

program H2 on a random input 𝑧 in the specified way because a

query ofH2 (𝑧) was already made. This happens ifA has guessed

B’s random choice of 𝑧 correctly, with negligible probability.

Claim 2. For the adversary A, the interaction with B is indistin-
guishable from the real experiment ExpTSUFA .

In the KeyGen phase, since B does not know the discrete log-

arithms of simulated {𝑋𝑖 }𝑖∈H, it simulates NIM public encodings

{pe𝑥,𝑖 }𝑖∈H using random inputs. Also, when simulating oracle Pre-

sign, since B does not know the discrete logarithms of simulated

{𝐾𝑖 = 𝑅𝑐𝑖 }𝑖∈P∩H, it simulates NIM public encodings {pe𝑘,𝑖 }𝑖∈P∩H
using random inputs. The NIZKAoKs are also simulated, but since

the NIZKAoK scheme is zero-knowledge, this will not be detected.

Indistinguishability of simulated oracle Presign can be expressed

as the computational indistinguishability of distributions{
(𝑔𝑘𝑖 , pe𝑘,𝑖 ) | 𝑘𝑖 ←$ Z𝑞 ; (pe𝑘,𝑖 , st𝑘,𝑖 ) ← NIM.Encode𝐵 (crs, 𝑘𝑖 )

}
c≈

{
(𝑅𝑐𝑖 , pe𝑘,𝑖 )

���� 𝑅 ←$ G; 𝑐𝑖 ←$ Z𝑞 ; 𝑘𝑖 ←$ Z𝑞 ;

(pe𝑘,𝑖 , st𝑘,𝑖 ) ← NIM.Encode𝐵 (crs, 𝑘𝑖 )

}
.

By a purely syntactic change, this is equivalent to{
(𝑔𝑥 , pe𝑥 ) | 𝑥 ←$ Z𝑞 ; (pe𝑥 , st) ← NIM.Encode𝐵 (crs, 𝑥)

}
c≈

{
(𝑔𝑥 , pe𝑦) | 𝑥,𝑦 ←$ Z𝑞 ; (pe𝑦, st) ← NIM.Encode𝐵 (crs, 𝑦)

}
,

which also expresses indistinguishability in the KeyGen phase. This

follows from the input privacy of NIM. A reduction proceeds simply

as follows: it samples 𝑥,𝑦 and obtains pe, an NIM public encoding

of 𝑥 or 𝑦, and then forwards (𝑔𝑥 , pe) toA; IfA can tell from which

distribution it is drawn, then it can break the said property.

The simulated random oracles H1,H2 are indistinguishable from

real. Each 𝑧 is sampled uniformly at random by B. Each 𝑦 is also

uniformly random: when it is derived as 𝑦 = 𝜇 −∑
𝑗∈P∩C 𝑘 𝑗 , since

𝜇 is sampled uniformly at random by the ExpDEUFB challenger and

hidden from A, we know 𝑦 is uniformly random. Finally, the simu-

lated oracle Sign responses are statistically close to real. The only

constraint on {𝑤𝑖 , 𝑢𝑖 }𝑖∈P is that their sums𝑤,𝑢 divide to the right

part 𝜎 of the one valid signature on msg under the verification key

𝑋 conditioned on presignature 𝐾𝑧𝑔𝑦 .

□

4 CONCRETE INSTANTIATION
In this section, we provide information on how we instantiate our

building blocks, namely NIM and accompanying NIZKAoKs. We do

not claim novelty for results presented here, and refer the reader to

original sources for their proofs.

Justifying the Choice. Abram et al. [3] show that NIM can be

instantiated (without a non-negligible correctness error) from De-

cisional Composite Residuosity (DCR) in the Paillier group Z∗
𝑁 2

,
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Quadratic Residuosity (QR) in the RSA group Z∗
𝑁
, a variant of

Joye–Libert, DDH-like assumptions in class groups, or LWE with a

superpolynomial modulus-to-noise ratio.

We opt for an instantiation using class groups due to the follow-

ing considerations. First, because we work in a malicious setting,

the mismatching message space of Paillier/RSA instantiations lead

to security problems that must be addressed using range proofs,

which are rather expensive. This is evidenced by prior threshold

ECDSA designs that use Paillier encryption with range proofs [34,

15]. In contrast, with the parameters set properly, class-group en-

cryption can natively handle a message space of a field of integers

modulo prime 𝑞, thus removing the need of range proofs. Second,

class-group elements are much smaller than RSA/Paillier ones at the

same level of security, mainly because the hardness of class-group

assumptions does not require the hardness of factoring. Moreover,

optimized class-group operations are faster than those in Paillier

groups; this is contrary to earlier widely-held beliefs based on

less efficient implementations. For information on the efficiency of

class-group cryptography, we refer the reader to Bouvier et al. [11].

4.1 Background on Class Groups
Group Structure. We work in a finite abelian group 𝐺 . Inside 𝐺 ,

a cyclic subgroup 𝐹 is generated by 𝑓 ∈ 𝐺 of order 𝑞, and discrete

logarithms base 𝑓 can be very efficiently computed. One can also

sample elements in 𝐺 that generate ‘hard’ subgroups. Each hard

subgroup is also cyclic, but it is hard to compute discrete logarithms

in it or to find the order of it.

Distributed Dlog. Suppose two parties hold two correlated ele-

ments of the group 𝐺 , say Alice holds 𝑓 𝑧ℎ and Bob holds ℎ, where

𝑧 ∈ Z𝑞 and ℎ is in a hard subgroup. There exists a Distributed

Discrete Logarithm (DDLog) mechanism that allows them to obtain

an additive sharing of 𝑧 without any interaction; that is, Alice can

obtain 𝑧𝐴 ∈ Z𝑞 and Bob can obtain 𝑧𝐵 ∈ Z𝑞 such that 𝑧𝐴 + 𝑧𝐵 = 𝑧.

The DDLog mechanism relies on a coset labelling function 𝜙 that,

for each coset 𝐶 of 𝐹 , deterministically maps all elements in 𝐶 to

a specific one among them. More intuitively, for each ℎ in a hard

subgroup, let 𝐶ℎ := {𝑓 𝑥ℎ | 𝑥 ∈ Z𝑞}, and there exists 𝛿 ∈ 𝐶ℎ such

that for each 𝑒 ∈ 𝐶ℎ we have 𝜙 (𝑒) = 𝛿 .
Continuing the description of DDLog: Alice computes 𝑓 𝑧ℎ/𝜙 (𝑓 𝑧ℎ),

and Bob computes 𝜙 (ℎ)/ℎ. It is straightforward to see that these re-
sults lie in the easy subgroup 𝐹 . Calculating the discrete logarithms

in 𝐹 gives the two shares 𝑧𝐴 and 𝑧𝐵 , and they sum to 𝑧.

Under the Hood. The reader can find information on class-group

cryptography in [11] and on the coset labelling function in [1]. Very

roughly, the underlying set of 𝐺 is squares in the class group of

binary quadratic forms of discriminant −𝑝𝑞3
, where 𝑝 is a random

1,571-bit prime at 128-bit security; the group operation is Gauss

composition. The easy subgroup 𝐹 is generated by the form 𝑓 =

(𝑞2, 𝑞,
1+𝑝𝑞

4
). A generator of a hard subgroup can be sampled as 𝑡𝑞 ,

where 𝑡 is randomly sampled in 𝐺 . All random coins used above

can be made public to eliminate trapdoors, hence class groups are

often said to have a transparent setup. The coset labelling function

is a composition of algorithms 1 and 2 in [45].

Sampling Exponents. Let𝐻 := ⟨ℎ⟩ be a hard subgroup of𝐺 , where
ℎ is a generator sampled using the approach above. In cryptographic

applications, we need a distribution D𝑞 over integers such that

{ℎ𝑥 | 𝑥 ∈ D𝑞} is statistically close to the uniform distribution

over the hard subgroup 𝐻 . There are several ways to define D𝑞

[20, lemma 4]. Typically, it is the uniform distribution over [2𝜅st𝑠],
where 𝜅st is the statistical security parameter and 𝑠 is an upper

bound on the order of the hard subgroup |𝐻 |. In practice, 𝜅st is set

to 40 and 𝑠 is set to 2
⌈log

√
𝑝𝑞⌉

.

4.2 NIM from Class Groups
The Non-Interactive Multiplication construction from class groups,

roughly speaking, uses Pedersen commitment for Encode𝐴 , and
Castagnos–Laguillaumie (CL) encryption [19, 20] for Encode𝐵 . In
prior threshold ECDSA schemes building on CL encryption, the

DDLog mechanism was not utilized, and multiplication proceeds as

two-round OLE. However, it turns out that NIM from class groups

is quite simple and does not add significant complexity to threshold

ECDSA, either conceptually or computationally. More importantly,

in our scheme it is not required that each party samples a key pair

in the class group; two publicly known random generators 𝑔0, 𝑔1 of

hard subgroups are sufficient. The construction is as follows.

NIM construction

• Setup(1𝜅 , 𝑞): Return crs := (𝑝, 𝑞, 𝑓 , 𝑔0, 𝑔1), where 𝑔0, 𝑔1

are two random generators of hard subgroups.

• Encode𝐴 (crs, 𝑣):
(1) Sample 𝑠 ←$ D𝑞 ;

(2) Compute pe𝐴 := 𝑔𝑠
0
𝑔𝑣

1
;

(3) Set st𝐴 := (𝑠, 𝑣);
(4) Return (pe𝐴, st𝐴).

• Encode𝐵 (crs, 𝑣):
(1) Sample 𝑟 ←$ D𝑞 ;

(2) Compute pe𝐵 := (𝑔𝑟
0
, 𝑓 𝑣𝑔𝑟

1
);

(3) Set st𝐵 := 𝑟 ;

(4) Return (pe𝐵, st𝐵).
• Decode𝐴 (crs, pe𝐵, st𝐴):

(1) Parse (𝑐0, 𝑐1) := pe𝐵 , (𝑠, 𝑣) := st𝐴;
(2) Compute 𝑒 := 𝑐𝑠

0
𝑐𝑣

1
;

(3) Set 𝛿 := 𝜙 (𝑒);
(4) Set 𝑧𝐴 := dlog𝑓 (𝑒/𝛿);
(5) Return 𝑧𝐴 .

• Decode𝐵 (crs, pe𝐴, st𝐵):
(1) Parse 𝑐 := pe𝐴 , 𝑟 := st𝐵 ;
(2) Compute 𝑒 := 𝑐𝑟 ;

(3) Set 𝛿 := 𝜙 (𝑒);
(4) Set 𝑧𝐵 := dlog𝑓 (𝛿/𝑒);
(5) Return 𝑧𝐵 .

Correctness. The correctness of the NIM scheme above directly

follows from [3, theorem 5]. To build some intuition, consider the

following informal explanation. Alice has input 𝑥 ∈ Z𝑞 and Bob has

input 𝑦 ∈ Z𝑞 . They interact in a simultaneous round, as follows:

(1) Alice sends 𝑔𝑠
0
𝑔𝑥

1
to Bob, and Bob sends (𝑔𝑟

0
, 𝑓 𝑦𝑔𝑟

1
) to Alice,

where 𝑠, 𝑟 are random numbers.
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(2) Alice computes (𝑔𝑟
0
)𝑠 (𝑓 𝑦𝑔𝑟

1
)𝑥 = 𝑓 𝑥𝑦𝑔𝑠𝑟

0
𝑔𝑥𝑟

1
, and Bob computes

(𝑔𝑠
0
𝑔𝑥

1
)𝑟 = 𝑔𝑠𝑟

0
𝑔𝑥𝑟

1
, after receiving each other’s message.

(3) They compute a common label𝛿 := 𝜙 (𝑓 𝑥𝑦𝑔𝑠𝑟
0
𝑔𝑥𝑟

1
) = 𝜙 (𝑔𝑠𝑟

0
𝑔𝑥𝑟

1
),

where 𝜙 is the coset labelling function.

(4) Alice gets an additive share 𝑧𝐴 := dlog𝑓 (𝑓 𝑥𝑦𝑔𝑠𝑟0 𝑔
𝑥𝑟
1
/𝛿); Bob

gets 𝑧𝐵 := dlog𝑓 (𝛿/𝑔𝑠𝑟0 𝑔
𝑥𝑟
1
). At this point it is easy to check

that 𝑧𝐴 + 𝑧𝐵 = 𝑥𝑦.

Input Privacy. The Encode𝐴 algorithm hides the input under the

uniformity assumption [3, definition 16]. The Encode𝐵 algorithm

hides the input under the Hard Subgroup Membership assumption

[11, definition 2].

Definition 7 (Uniformity Assumption [3]). Let 𝐺 be the class
group, and let 𝑡 ←$𝐺 , ℎ := 𝑡𝑞 such that ℎ is a hard-subgroup genera-
tor. The Uniformity assumption holds if, for all PPT A,��
Pr

[
A(𝑐) = 1

�� 𝑟 ←$ D𝑞, 𝑐 := ℎ𝑟
]
−Pr

[
A(𝑐) = 1

�� 𝑐 ←$𝐺
] �� ≤ negl(𝜅).

Definition 8 (Hard Subgroup Membership Assumption [11]).

Let𝐺 be the class group, and let 𝑡 ←$𝐺 , ℎ := 𝑡𝑞 such that ℎ is a hard-
subgroup generator. The Hard Subgroup Membership assumption
holds if, for all PPT A,��

Pr

[
A(𝑐) = 1

�� 𝑟 ←$ D𝑞, 𝑐 := ℎ𝑟
]

− Pr

[
A(𝑐) = 1

�� 𝑟 ←$ D𝑞,𝑚 ←$ Z𝑞, 𝑐 := 𝑓𝑚ℎ𝑟
] �� ≤ negl(𝜅) .

Theorem 2 (implicit in [3]). If the Uniformity and Hard Subgroup
Membership assumptions hold in the class group 𝐺 , then the NIM
scheme above satisfies Input Privacy (definition 4).

4.3 Concrete NIZKAoKs
Alongside the NIM instantiation above, we need NIZKAoKs for the

following relations:

RCL-DL =
{
(𝑐0, 𝑐1,𝑉 ); (𝑟, 𝑣) | 𝑐0 = 𝑔𝑟

0
∧ 𝑐1 = 𝑓 𝑣𝑔𝑟

1
∧𝑉 = 𝑔𝑣

}
;

RPed-DL =
{
(𝑐,𝑉 ); (𝑟, 𝑣) | 𝑐 = 𝑔𝑟

0
𝑔𝑣

1
∧𝑉 = 𝑔𝑣

}
.

In class groups, the knowledge extractability of Sigma protocols

is a complicated matter. Using binary challenges results in special-

sound proofs [18], but the prover must be repeated for many times,

which incurs much overhead. Assuming Low Order (it is hard to

find low-order elements in 𝐺) and Strong Root (it is hard to find

roots in𝐺 of random elements in a hard subgroup 𝐻 ), the Sigma-

protocol proofs in [16] are shown to be knowledge-extractable

unless some bad event happens which breaks either assumption.

For these assumptions to hold, the hard-subgroup generators must

not be adversarially chosen, and this is fine in our case. Further, it

turns out that we do not really need to extract exponents in hard

subgroups for our security proof of the threshold ECDSA protocol

to go through, as is also observed in [14, 13, 5]. Under another Rough
Order assumption (it is hard to distinguish between a random class

group and one with rough order), general Sigma protocols can be

proven to satisfy standard soundness, i.e., any adversary cannot

produce a proof for a statement not in the language unless with

negligible probability. This is enough for the detection of party

misbehavior in the presigning phase.

In the security proof for threshold ECDSA, we require the secrets

𝑥𝑖 , 𝑘𝑖 , 𝛾𝑖 held by corrupted parties to be extracted from NIZKAoKs.

As we use standard EQ composition of Sigma protocols to bind

exponents in the class group 𝐺 to ones in the elliptic curve group

G, the extractability of Sigma-protocol proofs in G suffices here.

The remaining question is how the reduction can extract wit-

nesses from NIZKAoKs. Rewinding the adversary would blow up

the running time of the reduction, as multiple corrupted parties

are involved. On the other hand, if we aim for straight-line ex-

tractability from the Fischlin transform [31], the protocol would be

much more expensive. In elliptic curve groups, a 10x increase of

computation to generate a Fischlin proof may be acceptable, since

it still takes less than 1 ms; however, each long exponentiation in

the class group takes more than 5 ms at 128-bit security. Therefore,

we adopt the approach of [4] to establish straight-line extractability

for Schnorr-like Fiat-Shamir proofs in G, within an idealized model

such as the GGM.

NIZKAoK construction

Let HFS : {0, 1}∗ → Z𝑞 be a hash function.

NIZKAoKCL-DL:
• Prove((𝑐0, 𝑐1,𝑉 ), (𝑟, 𝑣)):

(1) Sample 𝑟 ←$ [22·𝜅st𝑞𝑠], 𝑣 ←$ Z𝑞 .
(2) Compute 𝑐0 := 𝑔𝑟

0
, 𝑐1 := 𝑓 �̃�𝑔𝑟

1
, �̃� := 𝑔�̃� .

(3) Compute 𝑒 := HFS (𝑔0, 𝑔1, 𝑓 , 𝑔, 𝑐0, 𝑐1,𝑉 , 𝑐0, 𝑐1, �̃� ).
(4) Compute 𝑠𝑟 := 𝑟 + 𝑒 · 𝑟 ∈ Z, 𝑠𝑣 := 𝑣 + 𝑒 · 𝑣 mod 𝑞.

(5) Return 𝜋 := (𝑐0, 𝑐1, �̃� , 𝑠𝑟 , 𝑠𝑣).
• Verify((𝑐0, 𝑐1,𝑉 ), 𝜋):

(1) Parse (𝑐0, 𝑐1, �̃� , 𝑠𝑟 , 𝑠𝑣) := 𝜋 .

(2) Compute 𝑒 := HFS (𝑔0, 𝑔1, 𝑓 , 𝑔, 𝑐0, 𝑐1,𝑉 , 𝑐0, 𝑐1, �̃� ).
(3) Check that 𝑠𝑟 < 2

2·𝜅st𝑞𝑠 and 𝑠𝑣 ∈ Z𝑞 .
(4) Check 𝑔

𝑠𝑟
0

= 𝑐0 · 𝑐𝑒
0
, 𝑓 𝑠𝑣𝑔

𝑠𝑟
1

= 𝑐1 · 𝑐𝑒
1
, 𝑔𝑠𝑣 = �̃� ·𝑉 𝑒

.

(5) If all checks pass, output 1; otherwise, output 0.

NIZKAoKPed-DL:
• Prove((𝑐,𝑉 ), (𝑟, 𝑣)):

(1) Sample 𝑟 ←$ [22·𝜅st𝑞𝑠], 𝑣 ←$ [2𝜅st𝑞2].
(2) Compute 𝑐 := 𝑔𝑟

0
𝑔�̃�

1
, �̃� := 𝑔�̃� .

(3) Compute 𝑒 := HFS (𝑔0, 𝑔1, 𝑔, 𝑐,𝑉 , 𝑐, �̃� ).
(4) Compute 𝑠𝑟 := 𝑟 + 𝑒 · 𝑟 ∈ Z, 𝑠𝑣 := 𝑣 + 𝑒 · 𝑣 ∈ Z.
(5) Return 𝜋 := (𝑐, �̃� , 𝑠𝑟 , 𝑠𝑣).

• Verify((𝑐,𝑉 ), 𝜋):
(1) Parse (𝑐, �̃� , 𝑠𝑟 , 𝑠𝑣) := 𝜋 .

(2) Compute 𝑒 := HFS (𝑔0, 𝑔1, 𝑔, 𝑐,𝑉 , 𝑐, �̃� ).
(3) Check that 𝑠𝑟 < 2

2·𝜅st𝑞𝑠 and 𝑠𝑣 < 2
𝜅st𝑞2

.

(4) Check that 𝑔
𝑠𝑟
0
𝑔
𝑠𝑣
1

= 𝑐 · 𝑐𝑒 and 𝑔𝑠𝑣 = �̃� ·𝑉 𝑒
.

(5) If all checks pass, output 1; otherwise, output 0.

Definition 9 (Low Order Assumption [16]). Let𝐺 be the class
group. The Low Order assumption holds if, for all PPT A,

Pr

[
𝜇𝑑 = 1 ∈ 𝐺 ∧ 𝜇 ≠ 1 ∧ |𝑑 | < 2

𝜅 | (𝜇, 𝑑) ← A(𝐺)
]
≤ negl(𝜅).

Definition 10 (Strong Root Assumption [16]). Let 𝐻 be a
hard subgroup of the class group𝐺 . The Strong Root assumption holds
if, for all PPT A,

Pr

[
𝑋𝑒 = 𝑌 ∧ �𝑘 ∈ Z s.t. 𝑒 = 2

𝑘 | 𝑌 ←$ 𝐻, (𝑋, 𝑒) ← A(𝑌 )
]
≤ negl(𝜅).

10
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Theorem 3 ([16, 39]). Assuming Low Order and Strong Root in𝐺 ,
with HFS modeled as a random oracle, the NIZKAoK scheme above is
complete, zero-knowledge, and knowledge-extractable.

5 IMPLEMENTATION AND EVALUATION
We present performance metrics of our threshold ECDSA protocol,

and compare it with prior work. We implement our protocol based

on the BICYCL library [11] which provides class group operations.

In line with other open-source threshold ECDSA implementations,

we target 128-bit security, which covers usage with the Bitcoin

curve secp256k1. The code is available at https://anonymous.4ope

n.science/r/tecdsa-2r-rust-8C3B.

5.1 Bandwidth Efficiency
We analyze the bandwidth usage in the signing protocol. Recall that

the elliptic curve group is denoted G and the class group is denoted

𝐺 . In the presigning phase, each party sends two G elements and

three 𝐺 elements, excluding the NIZKAoKs. In the online signing

phase, each party sends two Z𝑞 elements. At 128-bit computational

security and 40-bit statistical security, each 𝐺 element takes 220

bytes, each G element takes 33 bytes, and each Z𝑞 element takes 32

bytes. Therefore, communication excluding the proof is 790 bytes.

Flexible NIZKAoK Bandwidth. The size of the NIZKAoK sent

in the presigning phase is calculated separately, because several

variants may be considered in different practical settings. With the

default formulation, each NIZKAoKCL-DL proof consists of two 𝐺
elements, a G element, a Z𝑞 element, and an integer that is 157

bytes long; each NIZKAoKPed-DL proof consists of a 𝐺 element, a

G element, a 157-byte integer, and a 69-byte integer. Hence, the

default size of the proof in the presigning phase is 1,141 bytes.

One can utilize the Schnorr signature size reduction technique

to significantly reduce the proof size. Namely, for a Sigma protocol

transcript (𝐴, 𝑒, 𝑠), where 𝑒 is derived from a hash function via the

Fiat-Shamir heuristic, one can take (𝑒, 𝑠) instead of (𝐴, 𝑠) as the
NIZKAoK proof. To verify such a proof, the first-round commitment

𝐴 is reverse-sampled according to the verification equation, and

if the Fiat-Shamir hash digest equals 𝑒 , then the proof is accepted.

Note that reverse sampling the first-round commitment is fast in

both G and𝐺 , and therefore the computation to verify such a proof

is equal to that in the default formulation done naively. However, in

this case one cannot accelerate it via batch verification. This does

not cause a problem for not-too-many signers. In this setting the

proof takes only 447 bytes.

If presigning is performed in a known batch size, then one can

also utilize batch proofs [5]. In this setting, one proof can be used to

verify the well-formedness of𝑚 presigning protocol messages with

a size that only increases logarithmically with𝑚. The verification

computation, which dominates overall computation, cannot be

reduced if done naively, but like in the default formulation, some

precomputation can result in a decent speedup.

We report the most conservative number, 790 + 1141 = 1931

bytes, as the total message length each party sends in each signing

session, and do not delve into further details.

Comparison. If protocol messages are relayed by centralized

servers, the total outbound communication of a party in our signing

Table 2: Outbound communication with each peer among
threshold ECDSA schemes at 128-bit security.

Scheme Tool Comm. Note

GG18 [34] Paillier enc

11.7 KiB 𝜅 = 112

16.7 KiB 𝜅 = 128

LN18 [43]

Paillier enc

7.8 KiB 𝜅 = 112

10.8 KiB 𝜅 = 128

OT

190 KiB original ver.

60 KiB updated ver.

CGGMP20 [15] Paillier enc

16 KiB 4-round, 𝜅 = 112

23 KiB 4-round, 𝜅 = 128

15.8 KiB 7-round, 𝜅 = 112

22.8 KiB 7-round, 𝜅 = 128

DKLs19 [29] OT 90 KiB

DKLs24 [30] OT 50 KiB

CCLST20 [16] CL enc 3.5 KiB

CCLST23 [17] CL enc 4.2 KiB

WMC24 [49] threshold CL enc 3.4 KiB

ANOSS22 [2] ring-LPN PCG 0.017𝑛 + 0.18 KiB *

This work class group NIM 1.9 KiB

*[2] reports comm. amortized over a batch of 94019 signatures; their scheme only sup-

ports full threshold (𝑡 = 𝑛) and is not threshold-optimal. Some listed schemes require

broadcasts, the overhead of which is not counted.

protocol is 1.9 KiB. This model is seen in threshold Schnorr schemes,

e.g. [6], and we believe it accounts for many practical deployments.

In this model, among other threshold ECDSA schemes, only [49]

similarly achieves a constant communication of 3.4 KiB. Others all

take linear communication per party due to pairwise OLE.

However, among prior threshold ECDSA papers, the common

choice has been to measure communication in the peer-to-peer

network model. In this case, all schemes require outbound commu-

nication per party that is at least linear in the number of parties.

For our protocol, the number is 1.9 · (𝑡 − 1) KiB.
We compare each party’s outbound communication with each

peer among different threshold ECDSA schemes in table 2, fol-

lowing [15, figure 1]. Note that [15] gives estimates using 112-bit

security for Paillier encryption (2048-bit modulus 𝑁 ). Since 128-bit

security (3072-bit modulus) is practically used in well-known open-

source implementations,
2
we also list numbers at 128-bit security

accordingly. For schemes that use broadcasts, our estimates take

broadcasts as multicasts and do not count the overhead, which

favors those schemes.

It is generally agreed that schemes based on OT consume more

bandwidth than those based on homomorphic encryption, and

schemes based on Paillier consume more bandwidth than those

based on Castagnos–Laguillaumie class group encryption. Our pro-

tocol instantiated with class groups can be seen as one that extends

the last technical approach by getting rid of the OLE response

messages. In the peer-to-peer model, our scheme approximately

2
For example, the implementation of Dfns and the Linux Foundation Decentralized

Trust project, available at https://github.com/LFDT-Lockness/cggmp21.
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Table 3: Single-threaded signer computation time in millisec-
onds among threshold ECDSA schemes at 128-bit security.

Scheme 3-party 5-party 7-party Note

CGGMP20 [15] 918 1810 2720 four-round ver.

CCLST20 [16] 388 628 868

DKLs24 [30] 21 41 61

WMC24 [49] 281 411 535

This work 224 405 586

Each number is the combined running time of presigning and signing. Based on local

benchmarking and not accounting for network latency.

halves communication compared to some most bandwidth-efficient

schemes [16, 17]. If a relaying server is available, our bandwidth

savings would even be demonstrated asymptotically. Furthermore,

as is explained in [4], a total communication of just 1.9 KiB makes

our scheme very suitable for scenarios with constrained communi-

cation such as NFC, QR codes, and push notifications.

The scheme of Abram et al. [2] is the only one that consumes less

bandwidth than ours, based on reported communication amortized

over 94019 signing sessions. Its limitations are heavier computation,

unimplemented preprocessing protocol, and only supporting full

threshold (i.e., 𝑡 = 𝑛) and not being threshold-optimal.

5.2 Computational Efficiency
Wemeasure computational cost in terms of single-threaded running

time of each party in a signing session. The machine used for the

benchmarks features Intel i7-13700K CPU and 32 GB of memory,

and runs Ubuntu 24.04. Results are presented in table 3.

Our comparison is limited in scope because not many prior

schemes have open-source reference implementations. Nonethe-

less, the schemes listed in table 3 are reasonably representative

of the major technical approaches, namely Paillier, OT, and class

groups. Furthermore, in practical cryptocurrency wallets, the num-

ber of parties are typically 3 to 5 and rarely exceeds 10, and we

thus focus on such small-scale deployments in table 3. We remark

that in decentralized finance applications there can sometimes be

more than 20 parties; however, as the listed schemes all have linear

computation, the performance can be extrapolated in this case.

The computation of schemes based on OT, e.g. DKLs24 [30], pri-

marily consists of symmetric cryptographic operations (via OT ex-

tension techniques) and can benefit from existing highly-optimized

implementations. Therefore, it is rather hard for schemes like ours

to outperform them computationally. However, for [15, 30] and

our scheme, the overwhelming majority of computation is in the

presigning phase, and the online-signing round takes less than 1

millisecond of computation; hence, with presigning, the difference

in computation would not be pronounced for end users. Even when

the protocol falls back to interactive signing (without available pres-

ignatures) our scheme would be fast enough. Threshold ECDSA is

often used in applications with a human factor, such as cryptocur-

rency wallets where the user must check the transaction before

signing. The average human reaction time to a visual stimulus is

around 250 milliseconds, and any latency below that is generally

acceptable. Anyway, since ours requires one fewer round and much

less communication, it will outperform theirs in certain scenarios.

Our scheme runs faster than CGGMP20 [15] by roughly 4x,

mainly because [15] relies on computationally expensive range

proofs, which other schemes based on Paillier encryption also do.

Recent works [51, 48] report improvements to them by optimizing

the range proofs; their reported speedups are less than 2x, and we

project that ours would still outperform these improved variants.

At higher security levels, the advantage of schemes based on class

groups over Paillier ones will be greater; see [11, table 3].

Our scheme outperforms CCLST20 [16] by 30% to 40%, and is

basically on par with WMC24 [49]. However, for WMC24, a sig-

nificant proportion of computation happens in the online-signing

round, because their last step is threshold decryption, which re-

quires class group exponentiations linear in 𝑛. With similar total

computational costs, it is certainly preferable to offload the bulk of

the computation to the presigning phase, which ours does. More-

over, WMC24 takes 4 rounds, 3 of which are broadcasts. We have

not implemented CCLST23 [17], which is the identifiable-abort

version of CCLST20 [16], and WMYC23 [50], but [49] reports that

both are at least 2x slower than WMC24.

The ANOSS22 [2] scheme requires a large batch of presigning

material to be expanded from preshared seeds at once. They report

that, at a batch size of 94019, each signature takes more than 1 sec-

ond of computation, and the total time for the whole batch is quite

high. Their scheme appears suitable for scenarios where computing

power is ample but communication is extremely constrained.

Further Optimizations. Our implementation is at a prototyping

stage, without many in-depth optimizations. However, there are

clear-cut paths towards speedups. We discuss some of them here. In

our scheme, the computation that increases linearly with the num-

ber of parties consists in NIM decoding and NIZKAoK verification.

To optimize the latter, if presigning is done in large batches, one

can consider batch proofs [5], and if there are many parties, one can

consider randomized batch verification [7]. In both scenarios, pre-

computation is crucial for accelerating class group exponentiations.

In [5], a speedup of 4.7x for fixed-basis class-group exponentiation

at a cost of 1.2 seconds of precomputation is reported. Using this

strategy, NIZKAoK verification can be much faster since it mainly

requires fixed-basis exponentiations base 𝑔0 and 𝑔1.

6 CONCLUSION
In this work, we propose the first two-round threshold ECDSA

scheme in the threshold-optimal setting, solving an important open

question in an active area of research. We prove our scheme secure,

and show its practical efficiency. It outperforms the state of the art

in bandwidth efficiency. Its computational speed is also competitive,

and we see promise for further optimizations.

Our protocol is proven secure under the static corruption model.

For threshold Schnorr-like signatures, there have been advances

in achieving security under adaptive corruption, but for thresh-

old ECDSA, full adaptive security (without relying on the single-

inconsistent-player model) remains an open challenge. It is possible

to instantiate our template with other number-theoretic tools such

as Paillier. However, it remains to find an alternative approach that

also leads to a two-round solution and is both light in computation
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(comparably to OT extension) and compact in communication. We

leave them as questions for future research.
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